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ABSTRACT
In this article we present a model for analyzing patterns of genetic diversity in a continuous, finite,

linear habitat with restricted gene flow. The distribution of coalescent times and locations is derived for
a pair of sequences sampled from arbitrary locations along the habitat. The results for mean time to
coalescence are compared to simulated data. As expected, mean time to common ancestry increases with
the distance separating the two sequences. Additionally, this mean time is greater near the center of the
habitat than near the ends. In the distant past, lineages that have not undergone coalescence are more
likely to have been at opposite ends of the population range, whereas coalescent events in the distant
past are biased toward the center. All of these effects are more pronounced when gene flow is more
limited. The pattern of pairwise nucleotide differences predicted by the model is compared to data
collected from sardine populations. The sardine data are used to illustrate how demographic parameters
can be estimated using the model.

MIGRATION often plays an important role in shap- common ancestor of two or more sequences, rather
than on the properties of the population as a whole.ing patterns of genetic diversity. Under condi-

tions of restricted gene flow, the geographical and genetic This focus on the genealogical structure of a sample
provides a framework in which properties of popula-structures of a population tend to become correlated.

In the most basic terms, we expect individuals in close tions can be estimated. Coalescent theory applied to
geographically structured populations with discretegeographical proximity to be genetically more similar

than geographically distant individuals. This differentia- demes has been formalized as the “structured coales-
cent” (see, e.g., Wilkinson-Herbots 1998).tion will arise even in the absence of local adaptation,

due to locally occurring genetic drift. As a result, it The coalescent model developed in this article as-
sumes a population distributed uniformly along a finite,is possible to use existing patterns of neutral genetic

variation to make inferences about the geographic struc- one-dimensional habitat. Gene flow is restricted, so loca-
tions of parents and offspring are correlated. A diffusionture of populations.

The best-studied models of geographic structure are approximation is used to characterize the locations of
ancestors of sampled sequences. Applied to pairs ofthe island (Wright 1931; Maruyama 1970a) and step-

ping-stone (Kimura and Weiss 1964) models. Both sequences, this approach fully specifies the probability
density for the times and locations of their most recenttypes of model assume a population composed of a
common ancestors and also provides summary statisticsnumber of subpopulations, or demes, connected to
such as the mean time to coalescence.each other through migration. Each deme is assumed

The model is analogous to the one-dimensional step-to be panmictic. In the island model, there is no explicit
ping-stone model, but with some important differencesgeography, in that each migration event occurs via a
that illustrate the motivation for this work. Althoughcommon migrant pool. Stepping-stone models, in con-
there has been a lot of work on finite stepping-stonetrast, permit migration only between neighboring
models (discussed below), most analyses of the stepping-demes. In the one-dimensional model, the demes are
stone model rely on nonrealistic treatments of habitatarrayed in a line, and each deme exchanges migrants
boundaries. The best-studied models fall into two cate-only with the two adjacent demes. The analogous two-
gories. Models in the first category assume that the endsdimensional model assumes a grid of demes, with each
of the array are joined together (the circular stepping-deme exchanging migrants with some number of neigh-
stone model, or the toroidal model in two dimensions;bors (e.g., four).
e.g., Maruyama 1970b; Nagylaki 1974a, 1977; Stro-Coalescent theory differs from classical population
beck 1987; Slatkin 1991). This assumption securesgenetics in its focus on the time to the most recent
mathematical tractability by making all demes identical
and migration isotropic (Strobeck 1987), but is directly
applicable to few systems in nature (e.g., a population
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length (e.g., Weiss and Kimura 1965; Nagylaki 1974b, distribution of coalescence times (Slatkin 1991), many
classical population-genetic analyses do not make use1976; Sawyer 1976, 1977). While these models provide
of all of the information in DNA sequence data, makinguseful insights regarding the short-term behavior of
the coalescent approach presented here preferable. Fur-populations in a one-dimensional habitat, they predict
thermore, all of these analyses rely on approximationsinfinite divergence between individuals (Sawyer 1976;
that assume a large local population size, an assumptionGriffiths 1981; Wilkinson-Herbots 1998).
that is relaxed in the present analysis. However, it isThe model studied here assumes a finite linear habitat
noteworthy that the results derived here are consistent(e.g., along a stretch of coastline). The analysis indicates
with, and in some cases anticipated by, much of thisthat the expected pattern of genetic diversity does, in
previous work.fact, depend on location in the habitat, suggesting that

A model similar to the one presented here was pro-application of a circular model to a finite linear popula-
posed by Barton and Wilson (1995, 1996), who ap-tion is problematic. At the very least, this misapplication
plied a coalescent approach to a continuous populationentails discarding information encoded in the variation
in two dimensions, deriving recursion equations thatin genetic diversity along the population range.
describe the coalescent process for a pair of sequences.Models of isolation by distance in a continuous popu-
These equations agree closely with simulated distribu-lation date back to Wright (1943), who defined the
tions of coalescence times. However, the method be-effective neighborhood population size as the reciprocal
comes cumbersome for long coalescence times and doesof the probability of self-fertilization. That is, the neigh-
not readily lead to summary statistics such as the mo-borhood size is approximately the number of individuals
ments of the probability distribution. While limited towithin the single-generation dispersal range. Wright’s
pairs of genes in a one-dimensional habitat, the modelwork shows that the correlation between adjacent indi-
presented here is easily applied to both long and shortviduals and the differentiation between neighborhoods
coalescence times and yields summary statistics that canboth increase as the neighborhood size becomes small
be used to make inferences regarding demographic his-compared with the total population size. However,
tory from genetic data. Simulation results confirm thatmuch of the theoretical work since has focused on popu-
the diffusion approximation used in this model provideslations subdivided into discrete demes. While a discrete
an accurate characterization of the entire coalescentmodel may be appropriate for many organisms, others
process under a broad range of parameter values.may be distributed more or less continuously across

a particular range, but nevertheless be geographically
structured due to limited gene flow. The model pre- THE MODEL
sented here assumes a continuous population, but can

The model assumes a uniformly distributed popula-
be applied in modified form to the discrete-demes tion of N haploid individuals in a linear habitat, but can
model. be applied to a population of N/2 diploid individuals

Work from within the classical population genetics without modification. Distance is scaled such that any
paradigm provides some insight to the properties of location along the habitat is indexed by a number be-
finite linear models similar to the one considered here. tween 0 and 1 (with 1⁄2 being the midpoint of the habi-
Finite one-dimensional stepping-stone models have tat). Absolute density-dependent population regulation
been analyzed by Maruyama (1970c), Fleming and Su is assumed. Each individual occupies a space of width
(1974), and Malécot (1975). These analyses derive 1/N, from which all other individuals are excluded. The
expectations for classical measures such as the covari- structure of the population is a one-dimensional lattice,
ance in gene frequencies across demes. Nagylaki and as in the voter model (Holley and Liggett 1975), a
Barcilon (1988) have considered probabilities of iden- contact-process model used in many ecological applica-
tity in a semiinfinite linear habitat. Maruyama (1971) tions (Durrett and Levin 1994). The distribution of
has also derived probabilities of identity for a continu- coalescence times is found using a continuous approxi-
ous population on a torus and the rate of decrease in mation. Another way to think of the model is as a step-
genetic variability in a finite two-dimensional popula- ping-stone model consisting of N demes, each of size 1.
tion (Maruyama 1970d, 1972). Hey (1991) has com- Generations are nonoverlapping. Each individual
pared the mean coalescence time for a pair of sequences produces a very large number of gametes, which are
sampled from opposite ends of a finite linear stepping dispersed according to a normal distribution centered
stone with that of a pair sampled at random from the at the location of the individual and with variance
entire population. The result that coalescence times are 2�2

m. Thus in each generation an effectively infinite num-
longer near the center of the habitat range is consistent ber of gametes arrives at each location. One of these
with findings of Herbots (1994, pp. 66 and 145–146), gametes is selected at random to become the adult at
who found a similar pattern in linear stepping-stone that location in the next generation. The distribution
models with three and five demes. of the origins of those gametes is the correlation of the

normal with a delta function at the individual’s location.While all of these results are intimately linked to the
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Thus, the location of a parent is normally distributed
around the location of its offspring, with variance 2�2

m

(a grandparent is normally distributed around the same
location with variance 4�2

m, and so on).
The boundaries of the habitat are reflecting, so a

gamete that would otherwise land outside the habitat
range is reflected back an equal distance within it. Each
individual thus has the same expected number of off-
spring regardless of its location. This means that migra-
tion is conservative, so migration alone is sufficient to
maintain the relative population densities at all loca-
tions in the habitat (Nagylaki 1980). Nonreflecting
boundaries would correspond to the case where those
gametes dispersing outside the habitat range are lost. In
such a system, individuals near the edges of the habitat
would have a reduced effective fecundity relative to
those nearer to the center.

As Felsenstein (1975) pointed out, most continuous-
space models in population genetics assume a uniform
population density that would not actually be main-
tained by the proposed reproductive scheme. A normal

Figure 1.—The diffusion process for two lineages. The
distribution of gametes without severe density regula- graphs illustrate the process of lineage diffusion backward in
tion generates a population that is clumped together time. (A) The probability distribution for the locations of the

two lineages at a time in the recent past. For sequences sam-at certain locations and sparsely populated at others.
pled from different locations, there is little overlap in the twoWith its absolute density regulation at all locations, the
distributions and therefore little possibility of a coalescentmodel of reproduction proposed here will immediately event. Going farther back in the past (B and C), the overlap

generate and maintain a population that is uniformly between the two distributions initially increases, and the prob-
distributed across its habitat range. ability of the two sequences sharing a common ancestor in-

creases. More recent coalescent events are most likely to occurApplying a coalescent approach to the analysis of this
near the center of the space separating the two samples (B).model involves tracking the location of the ancestors of
In the more distant past, the overlap between the two decreases

a particular sequence back in time. The location of a and broadens, and the range over which coalescent events
single sampled lineage can be approximated using a are likely to have occurred becomes less well defined (C).
diffusion process with diffusion constant �2

m. The precise
location of a lineage is known only for the generation
in which sampling occurred, so its location in the past
is represented here as a probability distribution. Consid- boundaries for the moment, it is equally likely to have
ering only a single sequence sampled from a particular come from a location to its left or its right in the previous
location z0 and its ancestors, one can imagine how this generation. It follows that when we consider two lin-
probability distribution broadens going back in time. eages at some distance from each other, they are equally
In the distant past, the distribution becomes completely likely to have been closer together or farther apart in
flat, when the ancestral sequence is equally likely to the previous generation. However, if the two shared a
have been anywhere in the range. The exact distribution common ancestor in the previous generation, they must
of ancestral locations can be derived for such a system have been closer together. Thus, conditional on not
using a Fourier series. coalescing in the previous generation, the two lineages

The analysis presented here derives the distribution are slightly more likely to have been farther apart than
of the time to coalescence for a pair of sequences drawn closer together. In contrast to the single-sequence case,
from locations z0

1 and z 0
2 in the habitat. Each lineage is as time in the past becomes very large, the ancestral

subject to a diffusion process backward in time, with lineages are not equally likely to be found anywhere in
the probability of coalescence related to the overlap of the habitat range. If the two lineages are still distinct,
the two probability distributions (Figure 1). The solu- they are likely to have been more geographically sepa-
tion employs a two-dimensional Fourier method, but is rated than a uniform distribution dictates.

The analysis involves a transformation of variables tomore complicated than the case of a single sequence
because the ancestral location distributions z1(t) and create two new parameters that do diffuse indepen-

dently. The first parameter encodes the distance be-z2(t), conditional on not yet having coalesced, are not
independent of each other. tween the two sequences, and the second their average

position:If we consider a single lineage, disregarding habitat
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more complex, partially reflecting, partially absorbing
boundary. Positions along this line represent states
where the two ancestral lineages are very close together
in space. Reflection is equivalent to the two lineages
moving past each other. Absorption is equivalent to a
coalescent event.

The diffusion process in the transformed state space
is isotropic, but not separable. Although diffusion in
one dimension is independent of diffusion in the other
dimension, it is not independent of location, due to
the fact that the state space is triangular. The diagonal
reflecting boundaries can be eliminated by placing a
mirror image of the state space opposite the boundary.
Reflection at the boundary is now represented as move-
ment into the mirror-image state space. Three such
reflections transform the state space into a square rang-
ing from �1 to 1 in both x and y. All four edges areFigure 2.—The state space of the system in the transformed
coalescent boundaries, and the symmetric shape makescoordinates. Diffusion of the two lineages in the one-dimen-
the x and y diffusion processes separable assional habitat is represented as the diffusion of a single point

in a two-dimensional state space. The x coordinate encodes the
U(x, y, t) � Ux(x, t)Uy(y, t), (4)distance between the two lineages, with x � 0 corresponding to

the maximal separation of the two and x � 1 corresponding to
where each distribution satisfies the diffusion equationthe two lineages being at the same location. The y coordinate

encodes the average position of the two lineages, with y � �1
corresponding to both lineages being at the end of the range �Ux

�t
� 2�2

m
�2Ux

�x 2
(5)

where z � 0 and y � 1 corresponding to z � 1. The point
x � 0, y � 0 is at the center of the square that is generated
by the three reflections. �Uy

�t
� 2�2

m
�2Uy

�y2
. (6)

Each pair of locations (z1, z 2) in the real habitat corre-
sponds to four locations in this square space, one in

x � 1 � |z1 � z 2| (1) each of the four images of the triangular state space
(see Equation A40).y � z1 � z 2 � 1. (2)

The boundary conditions at the edges of the square
The “1” terms in Equations 1 and 2 are included for depend on both the population density and the dis-
mathematical convenience, and other coordinate sys- persal (migration) rate. If the population density and
tems would yield the same results, so long as diffusion dispersal rate are very high, then when the two lineages
is isotropic. The distribution of ancestral locations t come close together, they are likely to pass by each other
generations in the past can now be represented as a rather than share a common ancestor, because there
two-dimensional probability surface in x and y: are a large number of individuals within their dispersal

range. This corresponds to a more reflecting boundary
U(x, y, t). (3) in the two-dimensional state space. On the other hand,

if the population density and dispersal rate are low,
This probability distribution is nonzero within a right neighborhood size is small, and two lineages that are
triangle ranging from �1 to 1 in y and from |y| to 1 in close together in space will be more likely to share a
x (Figure 2). common ancestor, corresponding to a more absorbing

The genealogical history is now modeled as a single boundary. Mathematically speaking, the flux rate of the
diffusion process in this triangular state space. The diffu- probability distribution across the boundary is equal to
sion constant is 2�2

m, twice that for the single-particle the probability that the two lineages coalesce in the
diffusion process discussed above. This factor of two previous generation.
arises from the fact that the new parameters are the Because the model assumes perfect density-depen-
sum and difference of two �2

m single-particle diffusion dent population regulation, there is exactly one haploid
processes. lineage in each span of width 1/N. A coalescent event

Diffusion is subject to two different boundary condi- occurs when the two ancestral lineages are found within
tions in the triangular state space. The two short sides the same 1/N span in a given generation. Note that
of the triangle are reflecting boundaries. Reflection at giving the lineages a finite physical width addresses the
these lines corresponds to reflection of a lineage off of concern raised by Sawyer (1976) that common ancestry

in a continuous model requires two lineages to have aa habitat boundary. The long side of the triangle is a



877Continuous-Habitat Coalescence

physical separation of zero, which leads to pathological a simple form analogous to that for the expectation
(Equations A26–A31 and A34). It is also possible tobehaviors when applied to models of more than one

dimension. In our continuous approximation of the write down the exact distribution of the locations of two
lineages that have not yet coalesced (A40), as well aspopulation, we assume that a coalescent event occurs

whenever the two lineages are separated by a distance the distribution of locations of the coalescent events
(A44–A46).of �1/(2N), that is, when 1 � 1/(2N) � x � 1. This

approximates the probability that both lineages are
found within the same fixed span of width 1/N.

RESULTS
Applying this criterion at the boundaries, the result is
an infinite series of sine and cosine terms. The full The results derived in this article have been compared

to simulation data to assess the accuracy of the diffusionsolution is derived in the appendix, and the main results
are reproduced here in the text. For example, the joint approximation in this context. This section contains

analytic and simulation results for a number of valuesprobability density for the locations of the two lineages
is given by over a range of parameters. These results provide both

reassurance regarding the accuracy of the equations
and insight into the behavior of the coalescent processUx(x, t) � �

∞

i�1

�i fi(x0)cos(�ix)
�i � sin(�i)cos(�i)

e�2�2
m�2

i (t�1/2)

in a continuous, linear habitat.
Monte Carlo simulations were performed backward

� �
∞

j�1

�*j f *j (x0)sin(�*j x)
�*j � sin(�*j )cos(�*j )

e�2�2
m�*2

j (t�1/2) (7) in time using two different migration/coalescence pro-
cesses. In the first process, the locations of the two lin-
eages were kept as floating point numbers. Migration

Uy(y, t) � �
∞

i�1

�i fi(y0)cos(�i y)
�i � sin(�i)cos(�i)

e�2�2
m�2

i (t�1/2) each generation was performed by drawing a random
number from a normal distribution. If the new location
for the lineage lay outside the habitat range, the new

� �
∞

j�1

�*j f *j (y0)sin(�*j y)
�*j � sin(�*j )cos(�*j )

e�2�2
m�*2

j (t�1/2). (8) location was selected by reflection at the habitat bound-
ary. A coalescent event occurs if, after translocation and
reflection, the two lineages lie within a distance 1/(2N)These series can be truncated for purposes of making
of each other. Times and locations of coalescent eventscalculations without significant loss of accuracy. The �i
were averaged over a large number of sample runs.and �*j terms are determined by the boundary condi-

The second process used a discrete lattice model.tions (see Equations A13), and the fi and f*j terms are
Each of the two lineages was assigned an integer locationdetermined by the two sampling locations (Equations
between 1 and N. Each generation two pseudorandomA21). Discussion of Fourier-series solutions of the diffu-
integers were drawn from independent Poisson distribu-sion equation can be found in most texts (e.g.,
tions for each lineage, which were then translocated byChurchill and Brown 1987). The treatment of initial
the difference of the two Poissons. This produces aconditions used here is standard, and the boundary
discrete distribution that approximates the shape of aconditions are incorporated using the Sturm-Liouville
normal distribution. Reflections were performed as inmethod.
the first process. If, after migration and reflection, theAt time t, the probability of the two lineages not yet
two lineages were at the same location (had the samehaving coalesced is equal to the volume under the prob-
integer location value), a coalescent event was consid-ability surface defined by U (x, y, t) within the square
ered to have occurred. Again, the times and locations�1 � x � 1, �1 � y � 1. Intuitively, this is because
of the coalescent events were averaged over a large num-coalescence is represented by the diffusion of the proba-
ber of sample runs.bility density out of the square. Thus, the instantaneous

The relative value of the mean time to coalescencerate of coalescence at time t is given by the rate at which
is determined largely by the product N�2

m, which is analo-the probability volume within the square is decreasing
gous to Nm in discrete-deme models of geographicalat that time. From this relationship it is possible to derive
structure. Presented here are three sets of data repre-the expectation of the time to coalescence for two se-
senting three different values of N�2

m. In all three casesquences sampled from locations corresponding to x 0
N � 200. The values of �2

m are 0.005, 0.0005, and 0.00005and y0:
(N�2

m � 1.0, 0.1, and 0.01). For each value of �2
m, the

E[T] �
1
2

� �
i
�

j

2
�2

m(�2
i � �2

j )
sin(�i)fi(x 0)

�i � sin(�i)cos(�i)
sin(�j)fj(y0)

�j � sin(�j)cos(�j)
. mean time to coalescence was determined for a pair of

sequences for a number of sampling locations. Figure(9)
3 presents mean time to coalescence determined analyti-
cally from Equation 9 for the parameters used in TableIt is possible using this approach to derive a number

of other analytic results, including the full probability 2 (N�2
m � 0.1). Mean times to coalescence in Tables 1–3

are determined by three methods. The first two valuesdistribution for the time to coalescence (Equations A25
and A33). Each of the moments of the distribution has are simulation results (by the Poisson and normal meth-
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reflecting boundary (Maruyama 1970c; Nagylaki and
Barcilon 1988) and by the work of Herbots (1994).

The model also provides results regarding the loca-
tions of the lineages and common ancestors (Equations
A40–A46). Figure 4 shows the probability surface for
the time and location of coalescence for three different
pairs of sequences (from Equation A44). Recent coales-
cent events are likely to be found in the region between
the two sampling sites. In the more distant past, the
probability distribution depends only on the migration
rate and not the sampling locations. This distant-past
distribution is biased toward the center of the range.
Another result that can be derived from the model is
the distribution of the lineage locations conditional on
their still being separate at a time t in the past (Equation
A40). In the distant past, this distribution is skewed
toward the edges. Intuitively, if the two lineages are
separated by a very deep genealogical branch, it most
likely results from their having spent a lot of time at oppo-Figure 3.—This surface represents the mean coalescence

times for pairs of sequences drawn from various locations site ends of the range. A number of other results are also
in the habitat range. The data here are equivalent to those derived and presented in the appendix, including the
presented in Table 2 (N � 100, �2

m � 0.001). The x- and y-axes strong-migration limit (Nagylaki 1980, 2000) and appli-
represent the two sampling locations. Darker areas correspond

cation of these results to a linear array of demes.to shorter mean coalescence times. The lower-left and upper-
right corners represent the case where both samples are taken
from one end of the range. The other two corners (with the

APPLICATION TO DATAlongest coalescence times) represent the case where the two
samples are taken from opposite ends of the range. Mean The expected time to coalescence can be used to
coalescence times are longer for samples taken from the cen-

estimate demographic parameters. In this section pub-ter of the array than for samples taken from near the ends.
lished sequence data are used to fit the model and
estimate the effective population size and the genetic
dispersal rate. Our purpose here is not to determineods described above) from 1 million replicates. The
specific parameter values for a particular organism. Inthird value is the analytically determined value from
fact, the population considered below is likely to violate

Equation 9.
one or more assumptions of the model. Our goal is

Inspection of the tables reveals that the analytically simply to illustrate the fact that patterns of genetic diver-
derived mean time to coalescence is in good agreement sity such as the one predicted by the model may be
with simulated data, with the results of the three meth- found in nature. We also want to emphasize the fact
ods differing typically by no more than 0.5%. Tables that the finite linear model makes different predictions
1–3 and Figure 3 also immediately reveal two features under neutrality than either an island or a circular
of this model. First is the intuitively pleasing result that model and that these differences may alter our interpre-
the mean time to coalescence increases with the physical tation of sequence data.
distance between the two sampled sequences. The rate We have applied the model developed here to se-
of increase with distance is dependent on the migration quence data collected from the mitochondrial control
rate, with lower migration rates corresponding to higher region in the five different regional forms of sardines
rates of genetic divergence with distance. (Sardinops) in the Indian and Pacific oceans (Bowen

A second, less intuitive, result from these data is the and Grant 1997). Sardines are characterized by an
dependence of time to coalescence on the location of antitropical distribution and are restricted to five tem-
the two sampled sequences (in contrast to their separa- perate upwelling zones off the coasts of Japan, Califor-
tion). The pattern is most easily seen by considering nia, Chile, Australia, and South Africa. Temperate wa-
pairs of adjacent sequences sampled from various loca- ters extend continuously from South Africa through
tions along the habitat. A pair of adjacent sequences Australia to Chile and from Japan to North America.
sampled from the center of the population range has The two temperate zones are separated by warmer tropi-
a longer mean time to coalescence than pairs sampled cal waters in the Pacific. However, Bowen and Grant
closer to the ends, an effect that is more pronounced (1997) point out that this tropical zone is fairly narrow
at lower migration rates. This result is anticipated by in the eastern Pacific, along the west coast of Mexico,
classical population genetics results in which the proba- suggesting that genetic contact between the California

and Chile sardine populations is or has been possible. Inbility of identity by descent is higher for demes near a
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TABLE 1

Comparison of derived and simulated mean coalescence times (N � 100; �2
m � 0.0001)

z 0
2

N�2
m � 0.01 0.0075 0.1025 0.2025 0.3025 0.4025 0.5025 0.5975 0.6975 0.7975 0.8975 0.9975

z 0
1

0.0025 36.60 281.68 669.21 1113.47 1570.23 2001.93 2371.48 2668.08 2932.13 3078.44 3133.22
37.47 279.72 667.07 1110.76 1569.15 1995.55 2364.42 2684.84 2926.59 3079.56 3129.56
37.41 280.99 669.28 1113.92 1568.95 2001.45 2368.60 2690.41 2931.44 3081.25 3133.56

0.0975 141.70 549.87 1014.72 1487.27 1928.50 2305.56 2632.17 2878.58 3032.74
141.72 548.70 1014.94 1484.19 1929.06 2306.08 2630.55 2883.32 3033.48
142.65 549.32 1014.88 1485.21 1929.46 2305.30 2634.11 2880.09 3032.88

0.1975 206.42 712.98 1226.90 1705.66 2112.37 2460.49 2727.98
204.91 709.88 1224.66 1706.43 2110.57 2460.18 2720.40
206.29 712.63 1228.65 1708.52 2111.00 2461.33 2722.62

0.2975 245.53 809.11 1344.81 1794.98 2178.62
244.31 809.61 1343.76 1788.08 2173.63
244.74 808.97 1346.20 1792.28 2178.23

0.3975 264.38 852.93 1361.66
263.59 851.07 1363.00
265.72 854.03 1359.55

0.4975 273.02
271.91
272.41

Tables 1–3 present a comparison of analytically derived mean coalescence times with values determined by simulation. Row
and column headings indicate the sampling locations for the two sequences, in terms of distance along the population range.
The leftmost nonempty cell in each row represents the case of two adjacent sequences at various points along the habitat. Mean
coalescence times are longer for pairs of sequences that are more distant, as expected, but also for pairs of sequences drawn
from closer to the center of the range.

the western Pacific, the tropical zone is much broader, with distance and greater genetic diversity near the cen-
ter of the habitat. The product N�2

m was estimated tomaking genetic exchange between Japan and Australia
unlikely. be 0.017, and �(� 2N�) was estimated to be 1.64. Assum-

ing a per generation mutation rate of �7.5 	 10�6 forOn the basis of these observations, it may be reason-
able to apply the finite, linear model to this system, the mitochondrial control region (on the basis of a

divergence rate of 15% per million years between lin-treating the populations as linearly arrayed from Japan
to California to Chile to Australia to South Africa, with eages and a mean generation time of 2 years, Butler

et al. 1996), this gives a total mitochondrial effectivegenetic contact possible only between adjacent popula-
tions. The total length of this range is �25,000 miles, population size of 2 	 105. This value is likely much

smaller than the census size, possibly resulting from awith the five sampling sites occurring at �5000-mile
intervals. These five sites yield 15 pairwise comparisons, higher variance of reproductive success than that as-

sumed by the model and also consistent with suggestionswhich were fit to the model by finding the parameter
values that minimize the sum of the squares of the differ- of population fluctuations in the species (Soutar and

Isaacs 1974). This produces an estimate of �2
m � 8.5 	ences between the predicted and observed values. The

statistical properties of these estimators are not investi- 10�8, which corresponds to a mean intergenerational
migration distance of �8 miles and a (mitochondrial)gated here. However, in this case, the model does ap-

pear to fit the data reasonably well, reproducing the neighborhood size of �200.
Inferences can also be drawn from differences in ob-same pattern of genetic diversity, and it provides a

framework that highlights certain features of the data. served and expected values. In the fourth column of
Figure 5 (labeled “Calif.”), the observed interpopulationFigure 5 shows the observed and expected average

number of pairwise nucleotide differences (propor- values are all lower than the corresponding expected
values. In the fifth column (“Japan”), on the other hand,tional to the expected coalescence time) in the data set

for parameter values minimizing the sum of the squares the expected values are lower than the observed. This
pattern suggests that the California and Chile popula-of the errors. The observed data manifest the two key

features of the model: increasing genetic differentiation tions are more closely connected genetically than might
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TABLE 2

Comparison of derived and simulated mean coalescence times (N � 100; �2
m � 0.001)

z 0
2

N�2
m � 0.1 0.0075 0.1025 0.2025 0.3025 0.4025 0.5025 0.5975 0.6975 0.7975 0.8975 0.9975

z 0
1

0.0025 119.82 163.96 223.05 280.07 333.74 381.82 421.42 454.09 478.93 494.39 499.97
120.64 163.78 223.23 280.18 333.85 382.85 420.77 454.56 479.53 494.62 499.57
120.25 164.58 223.64 281.02 334.57 382.57 421.76 455.20 479.78 494.87 500.11

0.0975 162.54 213.61 272.87 326.64 375.96 415.52 449.19 473.93 489.99
162.57 214.46 272.85 327.37 375.94 415.54 449.84 473.32 489.23
163.01 214.99 273.36 327.72 376.38 416.08 449.93 474.80 490.07

0.1975 198.57 249.50 306.66 357.14 398.07 433.25 458.77
198.55 248.96 306.15 356.94 397.92 432.57 459.22
198.55 249.78 306.62 357.31 398.56 433.68 459.45

0.2975 221.89 270.87 325.54 369.21 406.74
221.88 270.71 324.91 368.85 406.40
222.20 271.71 325.73 369.57 406.81

0.3975 235.49 281.81 328.99
235.82 281.91 329.18
235.77 282.31 329.72

0.4975 240.45
240.48
240.20

See Table 1 legend for details.

be predicted from distance alone, whereas the Japan Grant’s (1997) argument that the tropical barrier in
the eastern Pacific is, or has recently been, traversible.and California populations are genetically more distant

than expected. This observation supports Bowen and In fact, the data suggest that the tropical water in the

TABLE 3

Comparison of derived and simulated mean coalescence times (N � 100; �2
m � 0.01)

z 0
2

N�2
m � 1.0 0.0075 0.1025 0.2025 0.3025 0.4025 0.5025 0.5975 0.6975 0.7975 0.8975 0.9975

z 0
1

0.0025 188.44 190.30 197.90 204.65 210.72 216.22 220.51 223.88 226.56 228.25 228.44
188.45 191.10 198.18 205.18 211.41 216.87 220.68 224.16 227.15 227.98 228.81
188.43 191.53 198.19 205.20 211.47 216.82 221.04 224.53 227.05 228.57 229.09

0.0975 192.85 197.43 204.55 210.39 215.47 219.72 223.90 226.49 227.45
193.30 197.77 204.27 210.65 216.18 220.30 223.77 226.13 227.52
193.15 198.24 204.74 210.96 216.32 220.54 224.05 226.57 228.09

0.1975 199.03 203.39 208.78 214.40 218.49 222.23 224.11
199.82 203.53 209.24 214.71 218.58 222.28 225.39
199.53 203.79 209.44 214.77 219.01 222.54 225.08

0.2975 203.85 207.00 211.61 215.78 219.63
203.90 207.25 211.90 216.37 220.01
204.11 207.47 212.23 216.46 220.02

0.3975 206.53 208.47 212.25
206.95 209.15 212.57
206.84 209.30 212.97

0.4975 207.26
207.88
207.74

See Table 1 legend for details.
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Figure 4.—Probability
surfaces for the time and lo-
cation of the most recent
common ancestor. (A–C)
The probability distribu-
tions for the times and loca-
tions of coalescent events
for three different pairs of
sampling locations. Loca-
tion (spanning the entire
habitat range) is plotted
along the short axis, and
time (from 0 to 2000 gener-
ations in the past) along the
long axis; 2N � 2000 and
�2

m � 0.00005. The sample
locations (z 0

1, z 0
2) are (A) (0,

0.33), (B) (0.33, 0.67), and
(C) (0, 0.67). Initially there
is no chance of coalescence
due to the separation of the
sequences. In all three cases
the most recent coalescence
events are positioned right
between the two sampling
sites. Note that the surface
is taller in A than in B, in
spite of the fact that the two
graphs represent the same
separation between sam-
ples. This difference corre-
sponds to the shorter aver-
age coalescence times for
sequences taken from clos-
er to the edges of the habitat
range. Note also that the
peak in C is smaller and
shifted out on the time axis
relative to A and B, as a re-
sult of the larger distance

separating the sampling locations. As time in the past becomes very large, all three distributions approach a common shape,
with coalescence locations biased toward the center of the range.

eastern Pacific may represent less of a genetic barrier the distribution of possible genealogical histories of a
pair of sequences sampled from such a population. Re-than the equally large band of temperate water between

North America and Japan. sults derived from the model include the full distribu-
tion of coalescence times and locations, as well as aThis analysis is presented not to address specific issues

in sardine biogeography or question the conclusions of number of summary statistics, such as the mean time
to the most recent common ancestor.Bowen and Grant, who attribute the observed pattern

of genetic diversity to a range expansion of the sardine The analytic results derived from the model are in
populations. Our purpose has been simply to show that good agreement with simulations over a wide range
patterns predicted by the model can, in fact, be found in of parameter values. This agreement extends even to
natural populations and to illustrate how the model can extremely small neighborhood sizes (approaching one),
be employed to estimate interesting demographic parame- allowing us to relax the usual coalescent theory assump-
ters. Furthermore, the analysis suggests how observed pat- tion of a large local population size. In the other ex-
terns of genetic diversity can be made more meaningful treme, the strong migration limit where the neighbor-
when compared to a more sophisticated null model. hood size approaches the population size, the model

converges on well-established results for the coalescent
process in a panmictic population.

DISCUSSION The model makes several predictions regarding gene-
alogies in a finite continuous habitat. In addition to theWe have presented a model for analyzing genetic
intuitive result that genetic divergence increases withdiversity in a finite, continuous, linear population. Using

a diffusion approximation, the model fully characterizes distance, the model predicts that genetic diversity will
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size. For a given pair of locations, the ratio of the ex-
pected time to coalescence to the total population size
is determined primarily by the product N�2

m, which is
analogous to Nm in demic models of population struc-
ture. However, N and �m enter into minor terms in
the equations separately, meaning that it is possible, in
principle, to estimate these two parameters indepen-
dently without an independent estimate of the popula-
tion size (e.g., from � and �). In practice, however, it
seems unlikely that sufficient data could be collected
(or that a population could be found that conformed
closely enough to the model) to separately estimate
these parameters with any certainty.

It is also possible using this model to derive other
values for a particular set of parameters. Slatkin (1991)
derived FST in relation to mean time to coalescence for
pairs of genes as

Figure 5.—Average pairwise differences for the mitochon-
drial control region in sardines. The average number of nucle- FST �

t � t 0

t
, (10)

otide differences between pairs of sequences sampled from
five locations (dark shaded bars) are plotted here along with

where t 0 represents the mean time to coalescence forthe values predicted from the model (light shaded bars). Pa-
rameter values for the expected results were chosen to mini- a pair of sequences drawn from the same deme, and
mize the sum of the squares of the differences between the t represents the mean time to coalescence for a pair
expected and observed values. In the fourth column (Califor- drawn at random from the entire population. Thesenia), the observed values are consistently lower than expected,

two values can be derived from Equation 9, where t 0 issuggesting that the barrier to gene flow between California
the average value along the line (x 0 � 1, �1 � y0 � 1),and Chile is lower than might be suggested by distance alone.

Similarly, the higher-than-expected values in the fifth column and t is the average value over the entire space (�1 �
(Japan) suggest that the temperate zone in the northern Pa- x 0 � 1, �1 � y0 � 1). In fact, the value of t 0 is very
cific represents a larger barrier than would be predicted by nearly N, independent of the value of �2

m, consistentdistance alone.
with the observation that the mean within-deme coales-
cence time will average to N in any system with conserva-
tive migration (Strobeck 1987; Nagylaki 1998).be greater near the center of the habitat than at the

The distribution of coalescence times given by Equa-edges. Coalescent events in the recent past are most
tion A25 can also be combined with a particular muta-likely to occur between the sampling locations of the
tional model. Integration of this probability against thetwo sequences. In the distant past, the distribution of
mutational process will yield the probability of identitylocations of coalescent events becomes independent of
in state or the likelihood of a particular set of differencessampling location and is concentrated toward the center
between the two sequences. Results such as these mayof the habitat. The locations of lineages (conditional
be valuable in the analysis of sequence data.on not having coalesced), on the other hand, are biased

Mathematica files for generating the results describedtoward the edges of the habitat in the distant past. All
in this article are available from the authors, as is a C

of these effects are more pronounced under lower mi-
program for estimating parameter values from sequence

gration.
data.

In this development of the model, we have assumed
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tially absorbing boundary. The diffusion process has
2�2
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∞

n�0

U (n)
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2n(�2

m)(n�1)/2��n � 1
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now been reduced to a Sturm-Liouville-type problem,
where the boundary conditions are set by a relationship Substituting in expressions for the derivatives of Ux (de-
between the flux rate across the boundary and the den- rived from Equation A4), we get
sity function within the boundary.
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In these equations, the flux J across the boundary is set
equal to the average probability over the next genera-
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m)n�1�(n � 1).tion that the separation between the two lineages is �1/

(2N). Since there are N individuals in the population (A7b)
and complete density-dependent population regula-

Collecting terms by C1 and C2 and simplifying, thesetion, it is assumed that two lineages separated by less
conditions becomethan one-half the “width” of an individual must be the

same lineage. Thus the flux rate across the boundary is
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that the two lineages are separated by a distance s and
that this separation decreases by s in one generation of
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Equations A3a and A3b, a normal distribution has been
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Other dispersal patterns are, of course, possible. How-
ever, most patterns will converge on a normal distribu- and
tion after a relatively small number of generations. Re-
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rare.
The general solution to the diffusion equation is
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The �i series terms (from Equation A13a) are of the4N�2
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These relationships can be further simplified once we truncated for purposes of making calculations without
consider the following two relationships for the gamma significant loss of accuracy. The number of terms re-
function: quired is determined by parameter values, with more

terms needed for smaller neighborhood sizes, and for�(n � 1) � n! (A11a)
samples that are closer together. The calculations pre-
sented in Tables 1–3 were truncated after 40, 20, and�(n � 1⁄2) � �n�1

i�0 (2i � 1)
22n

√
 . (A11b)
7 terms, respectively.

The equations for the �i and a*j can be simplified inThe specific solution for the diffusion equation with
the case where the neighborhood size is very largethese boundary conditions then becomes
(√4
N�m � 1), in which case these equations become

Ux(x) � �
i
C i

1cos(�i x) � �
j
C j

2 sin(�*j x), (A12) approximately

where �i satisfies
cot(�i) � 4N�2

m�i (A18a)
cot(�i) �

4N�2
m�i � 1/√
�∞

n�1(�1)n (2�m �i)2n�1 ((n � 1)!/(2n � 1)!)
1 � �∞

n�1 [(��2
m �2

i )n/�n
m�12m] and

(A13a)

and �*j satisfies �tan(�*j ) � 4N�2
m�*j . (A18b)

�tan(�*j ) �
4N�2

m�*j � 1/√
�∞
n�1(�1)n (2�m �*j )2n�1 ((n � 1)!/(2n � 1)!)

1 � �∞
n�1 [(��2

m �*2
j )n/�n

m�12m]
. The form of the solution in equation A17 works well

(A13b) so long as the probability of coalescence in the first
generation in the past is very small, that is, when the

The normalization values for the eigenfunctions are
two sequences are separated by a sufficient distance
(when x0 is not close to 1) or when the neighborhood�Xi �2 � �

1

�1

cos2(�i x)dx �
�i � sin(�i)cos(�i)

�i

(A14a)
size is large. If x0 is close to 1 and the neighborhood
size is not large, we must use a more complex form for
the initial conditions. This results from the fact that the�X j �2 � �

1

�1

sin2(�j x)dx �
�j � sin(�j )cos(�j )

�j
, (A14b)

model assumes discrete time steps, and so the shortest
possible coalescence time is one generation. The diffu-which makes the normalized solution at time t � 0,
sion approximation solution, on the other hand, as-
sumes continuous time, and coalescence is possible atUx(x, 0) � �

i

C1i
√�i cos(�ix)

√�i � sin(�i)cos(�i)
� �

j

C 2j
√�*j sin(�*j x)

√�*j � sin(�*j )cos(�*j )
,

any time t � 0. When the probability of coalescence
(A15) occurring within the first time step is very small, this

correction is negligible. However, under certain condi-where the C1 and C2 terms are derived by integrating
tions, we must account for the fact that one generationthe product of the probability distribution at time t �
of migration occurs prior to the first opportunity for0 with each term:
coalescence. This migration effectively moves the initial
condition probability peak away from the boundary,C1i

� �
1

�1

f(x)√�i cos(�ix)

√�i � sin(�i)cos(�i)
dx (A16a)

resulting in a longer predicted time to coalescence.
The more accurate form of the solution, valid over

all values of x0, takes as its initial conditions a normalC 2j
� �

1

�1

f *(x)√�*j cos(�*j x)

√�*j � sin(�*j )cos(�*j )
dx. (A16b)

distribution of variance 2�2
m, centered at x0 and reflected

off of the boundary at x � 1. The initial probabilityIf we take the initial probability distribution to be the
distribution is given approximately by� function �(x � x0), then the system in x is represented

as

f (x) �
1

√4
�2
m

(e�(x�x0)2/4�2
m � e�(2�x�x0)2/4�2

m). (A19)
Ux(x, t) � �

i

�icos(�ix)cos(�i x0)
�i � sin(�i)cos(�i)

e�2�2
m�2

i t

Then the probability distribution in x as a function of� �
j

�*j sin(�*j x)sin(�*j x0)
�*j � sin(�*j )cos(�*j )

e�2�2
m�*2

j t. (A17)
t becomes
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of the integrals of the cosine series, and the cumulative
Ux(x, t) � �

∞

i�1

�i fi(x0)cos(�ix)
�i � sin(�i)cos(�i)

e�2�2
m�2

i (t�1/2)

distribution function of the coalescence time is

1 � P2(t) � 1 � 4�
∞

i�1
�
∞

j�1

fi(x0)sin(�i)
�i � sin(�i)cos(�i)

fj(y0)sin(�j)
�j � sin(�j)cos(�j)

e�2�2
m(�2

i ��2
j )(t�1/2).

� �
∞

j�1

�*j f *j (x0)sin(�*j x)
�*j � sin(�*j )cos(�*j )

e�2�2
m�*2

j (t�1/2),(A20)
(A23)

where Since all �i are nonzero, this value approaches one as
t goes to infinity.

fi (x0) �
1

√4
�2
m
�

1

�1

cos(�i x)(e�(x�x0)2/4�2
m � e�(2�x�x0)2/4�2

m)dx (A21a) Probability density function of the coalescence time:
The probability that the two lineages coalesce at time t
is given by the time derivative of the cumulative distribu-f *j (x0) �

1

√4
�2
m
�

1

�1

sin(�*j x)(e�(x�x0)2/4�2
m � e�(2�x�x0)2/4�2

m)dx. (A21b)
tion function,

Only a single reflection (at the point x � 1) is considered
C(t) � �

�

�t
P2(t), (A24)in deriving the initial conditions. More accurately, re-

flection off of the x � �1 point would also be included,
as well as higher-order reflections (off of both x � 1 which yields
and x � �1, etc.). However, unless the migration rate
is extremely high (high enough to completely eliminate C(t) � 8�2

m�
∞

i�1
�
∞

j�1

fi(x0)sin(�i)
�i � sin(�i)cos(�i)

fj(y0)sin(�j)
�j � sin(�j)cos(�j)any geographical structure), these terms are negligible

if x0 � 0. We have assumed by definition that x0 � 0, 	 (�2
i � �2

j )e�2�2
m(�2

i ��2
j )(t�1/2) (A25)

but y0 is allowed to range between �1 and 1. It should be
noted, however, that all solutions for y0 will be identical for values of t � 1⁄2. For t � 1⁄2, C(t) � 0.

Moments of the distribution: The expectation andunder the transformation y0 � �y0. Therefore, by consid-
ering only y0 � 0, we can retain a complete description variance for the distribution of coalescence times, as

well as all higher moments, can be derived from theof the system and ignore migratory reflections off of
the y0 � �1 boundary in the first generation. expression for C(t). The pth moment of the distribution

is given byAssuming this distribution for the initial conditions
is equivalent to permitting one-half generation of migra-

E[Tp] � �
∞

0

t pC(t)dt. (A26)tion to occur prior to initiation of the coalescent pro-
cess. In this way, coalescent events that occur over the
first generation take place in the range of times 1⁄2 � Since C(t) � 0 for t � 1⁄2, this becomes
t � 3⁄2. Note that t � 1, the first time when coalescence

E[Tp] � �
∞

0

(t � 1⁄2)pC(t � 1⁄2)dt. (A27)can occur in the discrete time model, lies at the center
of this range. This “premigration,” which is necessary to
compensate for approximations made in the translation The solution to
from discrete to continuous time, gives rise to the “t �

�
∞

0

t pC(t � 1⁄2)dt (A28)1⁄2” terms in Equation A20 and in subsequent derivations.
Once these factors have been taken into account, a full
description of the state of the system at time t is given has a simple form, which can be used to derive the
by U(x, y, t) � Ux(x, t) Uy(y, t), which can be manipulated moments:
to yield a number of other results.

Cumulative distribution function of the coalescence �
∞

0

t pC(t � 1⁄2)dt � �
∞

i�1
�
∞

j�1

4p!
(2�2

m(�2
i � �2

j ))p
time: First we derive the probability that the two lineages
have coalesced prior to time t. Recall that, in this formu-

	
fi(x0)sin(�i)

�i � sin(�i)cos(�i)
fj(y0)sin(�j)

�j � sin(�j)cos(�j)
.lation, coalescence is equivalent to diffusion outside of

the square state space. The formulas derived above have (A29)
been normalized so that, at t � 0, the volume under The expectation for the coalescence time then becomes
the probability surface is equal to one. At a time t, the

E[T] �
1
2

� �
∞

i�1
�
∞

j�1

2
�2

m(�2
i � �2

j )
fi(x0)sin(�i)

�i � sin(�i)cos(�i)
fj(y0)sin(�j)

�j � sin(�j)cos(�j)
probability that the two lineages are still separate is
simply given by the volume under the probability surface (A30)
within the square: and the variance is

P2(t) � �
1

�1
�

1

�1

U(x, y, t)dxdy � �
1

�1

Ux(x, t)dx�
1

�1

Uy(y, t)dy.
Var[T ] � �

∞

i�1
�
∞

j�1

2
(�2

m(�2
i � �2

j ))2

fi(x0)sin(�i)
�i � sin(�i)cos(�i)

fj(y0)sin(�j)
�j � sin(�j)cos(�j)

(A22)
� ��

∞

i�1
�
∞

j�1

2
�2

m(�2
i � �2

j )
fi(x0)sin(�i)

�i � sin(�i)cos(�i)
fj(y0)sin(�j)

�j � sin(�j)cos(�j)�
2

.Due to symmetry, the sine terms in the series expansions
of Ux and Uy integrate to zero, leaving only a product (A31)
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Simplified form: If the two samples are taken from nates. The likelihood at time t that the two lineages are
at positions z1 and z2 is given bylocations separated by more than the single-generation

dispersal range, or if the neighborhood size is large,
p(z1, z2, t) � U(x, y, t) � U(y, x, t) � U(�x, �y, t) � U(�y, �x, t),we can neglect the premigration correction introduced

(A40)above and use a simplified form of the solution where
the initial state of the system is the � function �(x � x0, where
y � y0). The cumulative distribution function, probabil-

x � 1 � |z1 � z2|, y � z1 � z2 � 1. (A41)ity density function, and pth moment of the distribution
of the time to coalescence are given by This probability distribution is not conditional on the

two lineages still being separate. That is, the total proba-
1 � P2(t) � 1 � 4�

∞

i�1
�
∞

j�1

cos(�ix0)sin(�i)
�i � sin(�i)cos(�i)

cos(�j y0)sin(�j)
�j � sin(�j)cos(�j)

e�2�2
m(�2

i ��2
j )t bility over all (z1, z2) between zero and one will not

integrate to one, but rather to the probability that the(A32)
two lineages have not yet coalesced.

C(t) � 8�2
m�

∞

i�1
�
∞

j�1

cos(�ix0)sin(�i)
�i � sin(�i)cos(�i)

cos(�j y0)sin(�j)
�j � sin(�j)cos(�j)

Locations of the coalescence events: The instanta-
neous rate of coalescence at a particular location is

	 (�2
i � �2

j )e�2�2
m(�2

i ��2
j )t (A33) equivalent to the flux across the boundary at the point

corresponding to that location. The probability of a
E [T p ] � �

∞

i�1
�
∞

j�1

4p!
(2�2

m(�2
i � �2

j ))p

cos(�ix0)sin(�i)
�i � sin(�i)cos(�i)

cos(�j y0)sin(�j)
�j � sin(�j)cos(�j)

. coalescent event occurring at a particular location in
the habitat, z0, corresponds to flux at four locations in(A34)
the transformed state space, one on each of the four
sides, and the differential width in the habitat, �z, isHigh migration limit: Considering the strong-migra-
twice the corresponding differential width (�x or �y) intion limit, where N�2

m becomes large, we expect the
the transformed space. The coalescence rate within themodel to converge on a panmictic population. As
range z0 to z0 � �z isN�2

m becomes large, �1 approaches zero, and only the
first term in Equations A32–A34 contributes signifi-

C(z0, z0 � �z, t) � 2�z( Jx(1, 2z0 �1, t) � Jy(2z0 � 1, 1, t)
cantly to the sum. Equation A33 thus simplifies to

� Jx(�1, 1 � 2z0, t) � Jy(1 � 2z0, � 1, t)),

(A42)E[T p] � 4p!
(4�2

m�2
1)p

cos(�1 x0)sin(�1)
�1 � sin(�1)cos(�1)

cos(�1 y0)sin(�1)
�1 � sin(�1)cos(�1)

.

where Jx and Jy are the flux rates in the x and y directions(A35)
at a particular point, which is related to the slope of

Furthermore, sin(�1) approaches �1, and cos(�1 x0) and the distribution function at that point:
cos(�1 y0) both approach one:

Jx � �2�2
m

�U
�x

(A43a)
E[Tp] � p!

(4�2
m�2

1)p
. (A36)

Jy � �2�2
m

�U
�y

. (A43b)
Finally, using a series expansion for cot(�1), we find
that, for large N�2

m,
The coalescence rate as a function of location is then

cot(�1) � 1
�1

� 4N�2
m�1 (A37)

C (z0, z0 � �z, t) � 8�2
m �z ��

∞

i�1
�
∞

i�1

�2
i sin(�i)

�i � sin(�i)cos(�i)
�icos(�i(2z0 � 1))

�i � sin(�i)cos(�i)

	 ( fi(x0) fi(y0) � fi(y0) fi(x0))e�2�2
m(�2

i ��2
i)(t�1/2)

�1 � 1

√4N�2
m

, (A38)

� �
∞

j�1
�
∞

j�1

�*2j cos(�*j )
�*j � sin(�*j )cos(�*j )

�*j sin(�*j (2z0 � 1))
�*j  � sin(�*j )cos(�*j )

which gives us
	 ( f *j (x0) f *j (y0) � f *j (y0) f *j (x0))e�2�2

m(�*2
j ��*2

j )t�1/2)�.
E[Tp] � p!Np, (A39)

(A44)
which is exactly what is expected for a panmictic popula-

The total probability of the coalescent event occurringtion of size N.
at a particular location is derived by integrating theLocations of the lineages: The probability distribution
coalescence rate over time,for the locations of two lineages that have not yet coa-

lesced is fully described by U(x, y, t). The transformed C(z0, z0 � �z) � �
∞

0
C(z0, z0 � �z, t)dt, (A45)

(triangular) state space is represented four times within
which givesthe square space over which we have been considering

the values of U. Thus, each combination of lineage loca-
C (z0, z0 � �z) � 2�z ��

∞

i�1
�
∞

i�1

2�2
i sin(�i)

�i � sin(�i)cos(�i)
�icos(�i(2z0 � 1))

�i � sin(�i)cos(�i)tions (z1, z2) corresponds to four pairs of (x, y) coordi-
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P 0
x(x) � 0 elsewhere, (A48a)

	
fi(x0) fi(y0) � fi(y0) fi(x0)

(�2
i � �2

i)

P 0
y(y) � D �y � �d1 � d2 � 2

D
� 1��,� �

∞

j�1
�
∞

j�1

2�*2
j cos(�*j )

�*j � sin(�*j )cos(�*j )
�*j sin(�*j (2z0 � 1))

�*j  � sin(�*j )cos(�*j )

	
f *j (x0) f *j (y0) � f *j (y0) f *j (x0)

(�*2
j � �*2

j  ) �. (A46) d1 � d2 � 2
D

� 1 � y �
d1 � d2 � 1

D
� 1,

Application to the discrete-demes stepping-stone
P 0

y(y) � D �d1 � d2

D
� 1 � y�,model: This solution can be applied approximately to

a finite-length stepping-stone model of population
structure by treating the D demes as part of a continuous d1 � d2 � 1

D
� 1 � y �

d1 � d2

D
� 1,

population. Assume a total population size of N (deme
population size of N/D) and migration rate m (a fraction

P 0
y(y) � 0 elsewhere. (A48b)m/2 of a deme’s population arrives from each of its

two neighbors each generation). The distance between For d1 � d2 � d, we must factor the reflecting boundary
into the distribution for x0,adjacent demes (from center to center), scaling the

total population from 0 to 1 as in the continuous case,
is 1/D, and the migration variance is m/D2, so �2

m equals P 0
x(x) � 2D�x � �1 �

1
D��, 1 �

1
D

� x � 1,
m/(2D2). The initial conditions are best represented as
sampling sequences from a uniform distribution over P 0

x(x) � 0 elsewhere. (A49)
the range of the deme. Two sequences from demes d1

The expression for y0 has the same form as in A48aand d2 (where 1 � d1, d2 � D) are assumed to be uni-
when d1 � d2.formly distributed over the deme range:

The functions fi(x0) and f*i (x0) are derived by integra-
tion as

P(z0
1) �

1
D

,
d1 � 1

D
� z0

1 �
d1

D
, P(z0

1) � 0 elsewhere.
fi(x0) � �

1

�1
cos(�ix)P 0

x(x)dx (A50a)
(A47)

f *i (x0) � �
1

�1
sin(�*i x)P 0

x(x)dx, (A50b)The initial distribution in the transformed (x, y) state
space can be approximated by triangular functions in where we use the large-neighborhood-size approxima-
x and y. For d1 � d2, these functions are tion to determine the � values:

P 0
x(x) � D �x � �1 �

|d1 � d2| � 1
D ��, cot(�i) �

2Nm�i

D2
(A51a)

1 �
|d1 � d2| � 1

D
� x � 1 �

|d1 � d2|
D

, �tan(�*j ) �
2Nm�*j

D2
. (A51b)

P 0
x(x) � D �1 �

|d1 � d2| � 1
D

� x�, The expressions for fi(y0) and f*i (y0) are exactly analo-
gous. These values can then be used to approximate the
distribution of the time to coalescence using Equations1 �

|d1 � d2|
D

� x � 1 �
|d1 � d2| � 1

D
,

A32–A34.


