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ABSTRACT
This article presents an analysis of a model of isolation by distance in a continuous, two-dimensional habitat.

An approximate expression is derived for the distribution of coalescence times for a pair of sequences sampled
from specific locations in a rectangular habitat. Results are qualitatively similar to previous analyses of
isolation by distance, but account explicitly for the location of samples relative to the habitat boundaries.
A separation-of-timescales approach takes advantage of the fact that the sampling locations affect only the
recent coalescent behavior. When the population size is larger than the number of generations required
for a lineage to cross the habitat range, the long-term genealogical process is reasonably well described
by Kingman’s coalescent with time rescaled by the effective population size. This long-term effective
population size is affected by the local dispersal behavior as well as the geometry of the habitat. When
the population size is smaller than the time required to cross the habitat, deep branches in the genealogy
are longer than would be expected under the standard neutral coalescent, similar to the pattern expected
for a panmictic population whose population size was larger in the past.

NATURAL populations are often geographically individual occupying each position in the lattice. Models
of this sort have been developed by Malécot (1968)structured. That is, there is frequently a correla-

tion between the geographic locations of parents and and Weiss and Kimura (1965) and specifically in the case
of a two-dimensional habitat of finite extent by Maruyamatheir offspring, resulting in the accumulation of genetic

differences between local populations. The connection (1971) and Malécot (1975).
Most analyses of stepping-stone models have relied onbetween genealogies and geography has long been a

subject of interest in population genetics. In particular, one of two types of assumption to secure mathematical
tractability. One class of models (the infinite steppingmany efforts have been made to construct methods for
stone) assumes an infinite array of demes (Weiss andmaking geographic and demographic inferences about
Kimura 1965; Nagylaki 1974a; Sawyer 1976, 1977).populations from patterns of genetic diversity.
These models are useful for considering the short-termThe best-studied models of geographic population
relationship between genetic and geographic distance,structure assume that the population is divided into a
but on longer timescales they predict infinite divergencenumber of subpopulations, or demes. In the “island model”
between individuals (Sawyer 1976; Griffiths 1981;(Wright 1931; Maruyama 1970a), migration between
Wilkinson-Herbots 1998). The other class of modelsdemes occurs through a common migrant pool. Because
invokes periodic boundary conditions (Maruyamathe destination of a migrant is independent of its origin,
1970b, 1971; Nagylaki 1974b, 1977; Strobeck 1987;this model lacks explicit geography. Geographically ex-
Slatkin 1991). In these models, the ends of the array ofplicit models are typically some variant of the stepping-
demes are joined together to form the “circular steppingstone model (Kimura and Weiss 1964). In these mod-
stone” in one dimension. In two dimensions, the arrayels, demes are arrayed in a lattice, with migration limited
of demes takes on the shape of a torus. Other analysesto adjacent demes, or biased in favor of nearby demes.
have undertaken the problem of a finite array of demesModels of continuous habitats, in which geographic
and the effect of range boundaries on the genetic struc-structure is more commonly referred to as “isolation by
ture of populations (Maruyama 1970c,d, 1972; Flem-distance” (Wright 1943), are in some sense a special
ing and Su 1974; Malécot 1975; Nagylaki and Barci-case of a stepping-stone model. If we enforce strict den-
lon 1988). The general result of these analyses is thatsity regulation and let the deme size become small,
proximity to the edge of the deme array increases proba-the stepping stone becomes a lattice model, with one
bilities of identity and the covariance in gene frequency
across demes.

Much of the recent work on geographic inference is
1Address for correspondence: Bauer Center for Genomics Research, 7

based on the coalescent (Kingman 1982a,b; HudsonDivinity Ave., Harvard University, Cambridge, MA 02138.
E-mail: jwilkins@cgr.harvard.edu 1983; Tajima 1983). Coalescent models focus on the
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history of a particular sample, rather than on the popula- lineages coalesce if they approach the same location at
the same time. The proximity within which two lineagestion as a whole. In this framework, models of population

structure are analyzed to make probabilistic statements must approach each other to coalesce is determined by
the population density. To construct the distribution ofabout the times to common ancestry for samples drawn

from specific geographic locations. Observed patterns coalescence times, we need to consider the locations of
the two lineages back through time, conditional on theirof genetic diversity, then, can be used to infer parameter

values (e.g., migration rate, population size) that best not yet having coalesced. Because of this conditioning,
the two random walks are not independent of each other.describe particular populations within a given model.

In the context of geographically structured populations, The dependence of each random walk on the location of
the other lineage is the source of the difficulty of obtainingthis approach has been formalized as the structured

coalescent (Notohara 1990; Wilkinson-Herbots 1998). mathematical expressions for this process.
The problem of coalescence times was treated origi-Analysis of genealogical processes in a continuous habitat

faces a particular challenge, pointed out by Felsenstein nally under different terms by Wright (1943), but has
been addressed most extensively by Barton and Wil-(1975). If not all organisms reproduce, and offspring

appear in locations close to where their parents were, son (1995, 1996). Their work derives recursion equa-
tions for the probability of coalescence for pairs of se-the population becomes clumped. However, most analy-

ses have assumed a uniform population density that is quences. In the recent past, coalescence probabilities
are determined only by local dynamics. However, forinconsistent with this mode of reproduction. A common

method for addressing this inconsistency (and the one deeper portions of the genealogy, coalescence probabil-
ities are influenced by the fact that populations inhabitthat is followed in this analysis) is to assume strong local

density regulation that forcibly maintains the uniform finite ranges. Barton and Wilson present an expression
for their solution for the toroidal habitat and indicatepopulation density. A fully occupied lattice model repre-

sents an extreme form of local density regulation. how an expression can be derived under reflecting
boundary conditions, where the habitat would be rect-Traditional (precoalescent) population genetics models

have focused on measures such as the probability of iden- angular. More recent work derives recursion equations
in a continuous habitat for different degrees of localtity and the covariance in gene frequency. These measures

are closely tied to the distribution of coalescence times density regulation (Barton et al. 2002).
The challenge of using genealogical data to infer geo-(Slatkin 1991); however, the formulation of the prob-

lem within the coalescent framework provides results graphic structure lies both in the fact that those analytic
expressions that can be derived are often unwieldy andthat make greater use of the information in DNA se-

quence data. The question of how best to infer migra- in the fact that only a fraction of the genealogical history
contains information relevant to geographic structure. Astion patterns in a two-dimensional habitat has been con-

sidered by a number of authors (Slatkin and Barton Barton and Wilson point out, the deeper branches in
genealogical trees will often represent lineages that have1989; Slatkin and Maddison 1990; Barton and Wil-

son 1996; Rousset 1997). The effects of habitat range crossed the species range multiple times. The fact that
geographically relevant information is restricted to re-boundaries on coalescence times have been investigated

in the one-dimensional stepping-stone model by Hey cent parts of the genealogy is the basis of the success
of rare allele methods of estimating gene flow (Slatkin(1991) and Herbots (1994, pp. 66 and 145–146), who

found shorter coalescence times nearer to the edges of 1985). Other analyses of models of gene flow have also
found deep branches in the genealogies to be unin-the array, consistent with the effects on probability of

identity and covariance in gene frequency. The analysis formative (Slatkin and Maddison 1990). Recent simu-
lation work on genealogical structures in continuousof Wilkins and Wakeley (2002) in the continuous one-

dimensional model found a similar relationship be- populations (Irwin 2002) illustrates the poor corre-
spondence between processes occurring at the geo-tween sampling location and coalescence time.

The goal of the work described in this article is to graphic level and the deeper branches of genealogies.
Under higher migration rates, deep genealogical divi-derive explicit expressions for the distribution of coales-

cence times for pairs of sequences sampled from specific sions show little correlation with geography. Under low
migration, these deep divisions can suggest specific bar-locations within a finite two-dimensional habitat. Geo-

graphic structuring arises in this model as a result of riers to gene flow where none actually exist.
A number of models of population structure havelimited intergenerational dispersal, or gene flow. In terms

of the coalescent process, we can imagine tracing the recently been studied with some success using a separa-
tion-of-timescales approach. These analyses treat the co-locations of the ancestors of sequences in our sample

backward in time. The locations of these ancestral lin- alescent process in the recent past as a function of the
details of the population structure and the samplingeages are modeled as a random walk in the habitat,

where the size of the steps is determined by the rate of scheme. In the more distant past, the genealogical pro-
cess is assumed to be independent of the samplinggene flow. Two lineages coalesce if they are derived from

the same individual in a given generation. Under strict scheme. Wakeley (1999) has referred to these two pro-
cesses as the “scattering phase” and the “collecting phase,”density regulation, this is equivalent to saying that the
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respectively, and has successfully used this method to ana- end of the rectangle. These two formulations are illus-
trated in Figure 1.lyze island-type models with large numbers of demes

(Wakeley 1998, 1999, 2000, 2001; Wakeley and Aliacar The population density � is equal to N/A. Population
density regulation is absolute, so the structure is that of2001; Wakeley and Lessard 2004). Similar methods

have been used to describe the coalescent process in a lattice model, with exactly one individual occupying
each point on the lattice every generation. This is equiva-plants with selfing (Nordborg 1997, 2000; Nordborg

and Donnelly 1997; Möhle 1998). lent to the lattice model investigated by Slatkin and
Maddison (1990) and by Barton and Wilson (1995,Separation of timescales is most powerful when the

scattering phase is very short compared with the collect- 1996) for absolute local density regulation. Generations
are nonoverlapping, with each individual producing aing phase, so that it may be treated as essentially instanta-

neous. However, even when these conditions do not large number of propagules, which are dispersed ac-
cording to a bivariate normal distribution with variancehold, the technique may permit the generation of tracta-

ble, if approximate, expressions to describe genealogies. �2 in each direction. A large number of propagules thus
arrive at each point in the lattice in every generation,A further affordance of the separation-of-timescales ap-

proach accrues if the collecting phase can be described and one of those propagules is chosen at random to
produce the adult at that location.using the equations developed for the standard neutral

coalescent model (SNCM; Kingman 1982a,b; Hudson In the coalescent process, samples are taken from
particular geographic locations. The locations of lin-1983; Tajima 1983).

Coalescent simulations (presented below) indicate eages corresponding to the ancestors of those samples
are modeled as a random walk, where each step is drawnthat a range of conditions exists over which the genea-

logical process in a continuous two-dimensional habitat from a two-dimensional normal distribution with vari-
ance �2 in each direction. The probability that the twoconverges approximately on the SNCM. That is, the

long-term genealogical behavior can be described by lineages coalesce in the previous generation is a func-
tion of the distance between them. Barton et al. (2002)some effective population size Ne that is independent

of the initial sampling scheme. It is possible to construct show that the effective density is inversely proportional
to the integral of this probability over distance. Undera separation-of-timescales-based description of the gene-

alogical process by combining this description of the the assumptions of Gaussian dispersal and perfect den-
sity regulation, the effective density is equal to the actuallong-term behavior with a location-dependent descrip-

tion of the short-term coalescence probabilities. This density �, and coalescence can be assumed to occur
when the two lineages simultaneously fall within an areaapproach results in explicit expressions for the distribu-

tion of coalescent times for a pair of sequences. This occupied by only one individual (1/�). Under these
conditions, the neighborhood size, Nb, is one over thedistribution is a function of the sampling locations, dis-

persal rate, population density, and habitat geometry. probability that two lineages starting from the same
location both fall within an area of 1/� after each has
taken one step in its random walk. As Nb becomes large,

THE MODEL
its value approaches 4��� 2 (Wright 1943).

In the recent past (the scattering phase), the distribu-The model analyzed here is a two-dimensional analog
of the one-dimensional model considered by Wilkins tion of coalescence times for a pair of sequences depends

on their relative sampling locations, the neighborhoodand Wakeley (2002). A population of N haploid in-
dividuals is uniformly distributed over a two-dimen- size, and the location of nearby habitat boundaries. In the

more distant past (the collecting phase), the coalescentsional habitat of area A. Most of the analysis focuses on
a rectangle whose length and width are given by L 1 and process becomes independent of the original sampling

scheme and depends only on properties of the popula-L 2 , where L 1 � L 2 , although some consideration is also
given to a torus that is the direct product of two circles tion as a whole. For certain parameter values, the collect-

ing phase is reasonably approximated by the standardof lengths L 1 and L 2 , where once again L 1 � L 2 . These
two geometries can also be thought of as two different equations for the coalescent process under the SNCM.

In these cases, the long-term effective population sizetreatments of the boundary conditions on the same
L 1 � L 2 rectangle. In both cases, the purpose of the depends on the local dispersal behavior and the habitat

geometry. For clarity, only the major results are pre-boundary conditions is to retain migrating lineages
within the habitat. In the “rectangular” case, reflecting sented in the text, along with comparisons of the ana-

lytic results to simulations. Derivations and more techni-boundary conditions are assumed. That is, if migration
would have carried a lineage a certain distance beyond cal discussion have been relegated to the appendix.
the habitat boundary, that lineage moves to a location
an equally far distance from the boundary, but inside

THE SCATTERING PHASE
the habitat, as if the lineage had bounced off the bound-
ary. In the toroidal case, periodic boundary conditions I begin by considering two sequences sampled from

the same location in a habitat without boundaries. Theare assumed. A lineage exiting the habitat in this case
would reenter through the boundary at the opposite coalescent behavior for two samples from the same loca-
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Figure 1.—Habitat geometry and boundary
conditions. The two-dimensional habitat consid-
ered in this article is a rectangle of dimensions
L 1 � L 2, where L 1 � L 2. Two different treatments
of the boundaries are considered. In the “rectan-
gular” model, reflecting boundary conditions are
assumed, and a lineage exiting the habitat reen-
ters on the same side. In the “toroidal” model,
periodic boundary conditions are assumed, and
a lineage reaching the boundary reenters the hab-
itat from the opposite side.

tion under strict density regulation is derived by Barton results of Equation 2 were compared with simulations.
Figure 2 presents the cumulative density function (CDF)and Wilson (1995, 1996). In terms of the parameters

as defined above, the probability that the two lineages for coalescence of a pair of sequences sampled from
adjacent lattice points in an unbounded habitat. Datashare a common ancestor t generations in the past is

given by are presented for several different values of the neigh-
borhood size. In each case, simulation results are pre-
sented along with the distribution described by thef(t) �

1
Nb t

�
1

Nb �
t �1

i�1

f(t � i)
i

. (1)
equations presented in this article. These results show
that the method fails as the neighborhood size becomesEquation 1 is in the form of a recursion relationship.
small (�20), even at smaller values of T. The probabilityThat is, to calculate the probability of coalescence in
of identity for a pair of samples from the same locationgeneration t, it is first necessary to calculate the probabil-
was also calculated for a number of different parameterities of coalescence in generations 1 through t � 1,
combinations by taking the sum of (F(T) � F(T �which becomes unwieldy for large values of t. An approx-
1))e�2	T over all T based on Equation 2. This compari-imate expression for this probability, which does not
son assumes a per-generation mutation rate of 	 underrequire recursive calculation, is derived in the appen-
an infinite-sites model of mutation. These values weredix. The corresponding equation for the cumulative
compared against Malécot’s approximation under theprobability distribution (the probability that two se-
same conditions (Equation 13 of Barton et al. 2002).quences sampled from the same location share a com-

mon ancestor no more than T generations in the past)
is given by Equation A14 and has the following form:

F(T ) �

1

Nb
�

Log(T ) � 2
1(Log(T ) � 
1 � 1)
Nb (Nb � 1)

�
Nb

Nb � 1 � Log(T )
Nb � Log(T)

� �
i�2

(�1)i 
i

Nbi� . (2)

In Equation 2, 
1 is Euler’s gamma (�0.5772). Approxi-
mate values for the subsequent 
i terms are given by
expression (A12) in the appendix. This expression be-
comes less accurate as the neighborhood size decreases.
In particular, it is not valid if Nb � Log(T ). The com-
plexity of these equations arises from the nonindepen-
dence of the two random walks. Specifically, if the two
lineages have not yet coalesced by a particular time T, Figure 2.—Comparison of analytic results to simulation for
the distance between them will, on average, be greater pairs of sequences sampled from adjacent lattice points. This

graph compares simulation results (dashed lines) with resultsthan would be expected from two independent random
derived from Equation 2 (solid lines) for different values ofwalks. This interference between lineages is, ultimately,
Nb. Initial spacing between the two samples is 1/√�, corre-the source of the elevation in effective population size
sponding to the distance separating two neighboring points

seen in geographically structured populations. on the two-dimensional lattice. Agreement is good for values
To evaluate the range of parameter values over which of Nb �10. No boundary effects are included in either the

simulations or the analytic results.the approximations invoked in this analysis are valid, the
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For all values tested, the two estimates differed by no processes that occur simultaneously, corresponding to
reflections off various habitat boundaries. Similar reason-�0.22%.
ing applies to samples drawn from separate locations. OneDescription of the coalescence of two samples drawn
must consider not only the coalescent process correspond-from different locations is both an easier and a harder
ing to the distance 
 between the two locations, but alsoproblem. The addition of a nonzero distance between
each distance 
i corresponding to the distance from onethe samples complicates the equations, but the degree
sample to each reflected image of the other sample.of lineage interference is less, so fewer terms need be

The total number and arrangement of images that needconsidered to generate an acceptable approximation.
to be considered will depend on the relative lengths ofFor sufficiently large values of Nb, the probability den-
the axes of the habitat. A minimum of eight images willsity function for coalescence of a pair of sequences sepa-
be required to account for the four habitat boundariesrated by a distance of 2
 (where 
 is in units of �) is
and four corners. Additional images corresponding togiven by Equation 3 (A17 in the appendix),
multiple reflections may also need to be considered,
particularly if the habitat is much longer in one dimen-f(t) �

e�
2/t

Nb t �1 �
1

Nb
��0,


 2

t � 
*
�


 2

t
,


2


*
�


 2

t �� , (3)
sion than in the other. In principle, the number of such
images is infinite. What is important for this method is

where 
* � 0.562, and � indicates the incomplete that we include all of the images that correspond to dis-
gamma function, which is given by Equation A18. tances shorter than that of the maximally distant included

Equation 3 was compared to Malécot’s approximation image. The process of determining image distances is
for probabilities of identity (Equation 15 of Barton et discussed in more detail in the appendix and is illustrated
al. 2002) for a number of parameter combinations just in Figure 3 for a particular hypothetical habitat. The
as Equation 2 was. Equation 3 represents a cruder ap- application of the method of images to a toroidal habitat
proximation than Equation 2, and the deviation from is described in detail by Barton and Wilson (1995, 1996)
Malécot’s approximation is correspondingly larger. For and in the appendix. Unfortunately, the method of
a neighborhood size of 50 and a separation between images does not lead directly to a method for rigorously
samples of 10�, the deviation ranged from 12.4% (	 � treating other habitat shapes. In certain cases, it may
10�3) to 21.4% (	 � 10�5). For Nb � 500, the deviations be possible to treat the recent past for nearby samples
were much smaller, varying between 1.2% (	 � 10�3) by considering only nearby boundaries. The validity of
and 2.2% (	 � 10�5). The deviations were nearly identi- such an approach is not considered further in the pres-
cal for a separation of 20�. The increasing error at ent analysis, however.
smaller neighborhood sizes results from the fact that
Equation 3 incompletely accounts for the interference

THE COLLECTING PHASEbetween lineages, and this interference is greatest when
the neighborhood size is small. The larger errors associ- The collecting phase refers to that part of the coales-
ated with lower mutation rates result from the fact that cent process that is independent of the original sam-
Equation 3 becomes more inaccurate farther in the past, pling scheme. It may not be immediately obvious that
and older coalescence times are more relevant to the such a phase must exist or account for a substantial portion
probability of identity when the mutation rate is small. of the genealogy. Nor is there any reason to suspect
When the mutation rate was set to 10�5, coalescence that this phase, if it does exist, will necessarily take on
times �200,000 generations in the past contributed a particularly simple form. However, in some models of
measurably to the probability of identity based on Equa- geographic structure it has been found that most of the
tion 3. With 	 � 10�3, the probability of identity was not genealogy can be adequately described using equations
significantly influenced by coalescent events �10,000 derived for the coalescent process in a panmictic Wright-
generations in the past. The separation-of-timescales Fisher population of constant size without selection,
approach employed here means that we will generally which I refer to as the SNCM. Cox and Durrett (2002)
require accuracy from Equation 3 only at the smaller suggest that this may be a general feature of the genea-
values of t. The accuracy of Equation 3 over the duration logical process in two dimensions. Simulations per-
of the scattering phase is illustrated in the context of formed for this analysis suggest that there is a certain
the overall method for particular cases below (Figures range of parameter values under which the coalescent
8–10). process in the two-dimensional continuous model con-

Given these expressions for the coalescent process, verges on the SNCM. The range of parameter values
we can use the method of images to construct an expres- and the effective population size depend on the local
sion for the distribution of coalescence times for a pair dispersal behavior, the population density, and the size
of sequences. This method can be applied to an arbitrary and shape of the habitat. The long-term coalescent pro-
pair of sampling locations, but is restricted to a rectangu- cess is better approximated by the SNCM for larger
lar habitat. To account for the boundary conditions, neighborhood sizes and smaller habitat distances.

Simulations were used to explore the range of param-we need to assume a number of competing coalescent
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Figure 4.—Long-term independence of the coalescent pro-
cess on the sampling scheme. This skyline plot illustrates the
convergence of the continuous-habitat coalescent to a process
that is equivalent to the standard neutral coalescent with a
constant effective population size. For each of the three curves,
100,000 replicates of the coalescent process were simulated
for a sample of 25 sequences. The parameters used for the
simulations were N � 10,000, � � 100, � � 0.3, in a square
habitat measuring 10 � 10. The mean waiting time for each
coalescent event was converted into a value corresponding to
the population size that would give that expected time in a
panmictic population. This inverse rate is plotted on the y-axis
against the average time in the past at which this coalescentFigure 3.—Illustration of the method of images. This repre-
event occurred. In the sampling scheme labeled “1 Location,”sents an example of how the method of images is used to
the 25 samples are drawn from a 5 � 5 grid of equally spacedconstruct the various components of the coalescent process.
points at the center of the habitat [location (5, 5)]. GridA hypothetical rectangular habitat is outlined by a thick solid
spacing is 0.1, corresponding to the minimum distance sepa-line. The two sampling locations are represented by solid stars.
rating two individuals in a two-dimensional lattice with � �The rectangular habitat is repeatedly reflected across each of
100. In the “5 Locations” scheme, 5 samples are drawn fromits boundaries to yield an infinite plane of tiled images of the
a vertical cross with spacing 0.1 between samples. There areoriginal habitat. The locations of the images of one of the
five such crosses centered on (2, 2), (2, 8), (5, 5), (8, 2), andtwo original samples are indicated by the other stars. The set
(8, 8). In the “20 Locations” scheme, samples are drawn fromof images used to construct the coalescent process should
a centered 5 � 5 grid with spacing of 2 [locations (1, 1), (1,include the eight images in the adjacent habitat images
3), etc.]. These three different sampling schemes all converge(shaded areas). Beyond this, the choice of exactly how many
on the same process, and coalescent events � �600 genera-images to include is somewhat arbitrary, except that the set
tions in the past are independent of the original samplingmust include all images that are closer than the farthest in-
locations. The fact that all three converge to a horizontal linecluded image. The circle represents the minimal radius of
indicates that this long-term process can be approximatedinclusion that incorporates the images in the eight shaded
by Kingman’s coalescent with time rescaled by the effectiveregions, determined by the distance to the farthest of these
population size. Variances have been omitted from this and(indicated by the thick dashed line to the hatched star). Any
other figures for clarity of presentation, but the variance oflarger radius would also represent a valid choice and would
the waiting time for each coalescent event is close to the squaresimply require consideration of additional images and corre-
of the mean, consistent with the exponential distribution ofspond to a longer duration of the scattering-phase description.
waiting times expected under the SNCM.

eter values over which the collecting phase converges
in which Kingman’s (1982a) coalescent has time scaledon the SNCM. Coalescent simulations were performed
by the effective population size (Ne), the expected ploton samples of size 25. In each case, 100,000 replicates
would be a horizontal line near Ne. Figure 4 illustrateswere completed. The results of these simulations were
the convergence of the coalescent process for differentanalyzed as skyline plots (Pybus et al. 2000; Strimmer
sampling schemes in a square habitat. For this set ofand Pybus 2001), that is, the average number of genera-
parameter values (N � 10,000; L 1 � L 2 � 10; � � 100;tions in which there were i lineages left in the sample,
� � 0.3; Nb � 113), the coalescent process convergeswhere 2 � i � 25. This average duration was then
to an effective population size of �10,700, regardlessmultiplied by � i

2�. The rate of coalescence is thus repre-
of the original sampling scheme. It is worth noting thatsented in terms of the effective population for which
the process converges in �600 generations, comparedthat rate would be expected under the SNCM. For each
to an average tree depth of �20,000 generations. Thus,value of i, this value was plotted against the mean time

at which the period of i lineages ended. For the SNCM, in this case, the collecting phase is well described by
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Figure 5.—Effect of habitat geometry on the long-term Figure 6.—M* and the long-term coalescent process. Each
point is derived from one skyline plot like those presented incoalescent process. Six skyline plots similar to those in Figure

3 are presented. In all cases, the total habitat area is 100, N � Figures 4 and 5. On the x-axis is plotted M*, which equals
N� 2/L 2

1 , where L 1 is the length of the major axis of a rectangu-10,000 (� � 100), and � � 0.3 (Nb � 113). All habitat areas
are rectangular, and the lengths L 1 and L 2 are given for each lar habitat. On the y-axis is the slope of the last five points for

each skyline plot. Solid circles correspond to the plots incurve. Samples are drawn from a centered 5 � 5 grid with
spacing L 1/5 in one dimension and L 2/5 in the other. As Figure 5 and are derived from 100,000 replicate genealogies.

Crosses correspond to plots derived from 10,000 replicates.L 1/L 2 becomes large, the long-term coalescent process is no
longer well approximated by a single effective population size. The two horizontal lines are placed at �0.05. For values of

M* � 1, the long-term coalescent process is well describedFor a neighborhood size of 113, the condition M* � 1 holds
if the ratio of lengths is �9:1. The values of M* for the plots by a single effective population size. When M* � 1, the deeper

branches in the genealogy are longer than what would beare, from top to bottom, 0.36, 0.5625, 1.44, 2.25, 5.76, and
9.0. The four plots for which M* � 1 are close to horizontal expected from a constant population size process. The results

represent genealogies simulated under a variety of combina-in the collecting phase. The plots for which M* � 1 are
represented by open circles and squares. The vertical crosses tions of parameter values. The ratio L 1/L 2 was varied from 1

to 50 (with L 1 ranging between 8 and 50), the density � was(10 � 10 square habitat with M* � 9.0) correspond to the
conditions used to generate the skyline plots in Figure 4. varied from 100 to 1000, and the dispersal rate � was varied

from 0.05 to 0.5, corresponding to neighborhood sizes ranging
from 3 to 3000.

the SNCM and accounts for �97% of the genealogical
process.

Figure 5 shows results for rectangular habitats of a movement will be rate limiting with respect to coales-
cence. Thus M* can serve as an indicator of the applica-variety of length-to-width ratios. In all cases, all other

parameter values are identical to those used to generate bility of the effective-population-size approximation for
the collecting phase. The parameter values used to gen-Figure 4. The total area is held constant at 100. This

graph illustrates the influence of habitat geometry on erate Figure 4 correspond to a value of M* � 4, and
the skyline plots in Figure 5 have M* values rangingthe long-term coalescent process and suggests condi-

tions under which the SNCM is an adequate description from 0.36 (for the uppermost set of points) to 9.0 (at
the bottom).of the collecting phase. Specifically, if the length of the

major axis of the habitat is too long with respect to the Figure 6 presents the results of simulations demon-
strating the correspondence between M* and the uni-dispersal rate, the coalescent process does not approach

the SNCM. As the ratio L 1/L 2 becomes very large, the formity of the long-term coalescent process. Each point
on the graph indicates the slope of the last five pointscoalescent process is expected to converge on that for

a one-dimensional habitat. It is difficult to compare of a skyline plot like those presented in Figures 4 and
5. Slopes close to zero indicate a good correspondencethis limit explicitly with the one-dimensional solution

(Wilkins and Wakeley 2002) due to the fact that as to the SNCM approximation. Under the SNCM, the
expected waiting time for the last coalescent event isL 2 becomes small, a very large number of reflections

will need to be considered. equal to the effective population size and equal to the
expected waiting time for all previous coalescent eventsThe average coalescence time for a pair of sequences

drawn from a panmictic population of size N is N genera- combined. This slope thus provides a crude estimate of
the fractional size of the error introduced by approxi-tions. A sequence taking a one-dimensional random

walk with step size � will have to travel a distance L 1 in mating the genealogical process in this manner. For
example, if the slope is 0.25, the ratio of the expected�(L 1/�)2 generations. Let us define M* as N� 2/L 2

1 ,
where L 1 is the length of the major axis of the habitat. waiting time for the last coalescent event to earlier

(more recent) waiting times will be on the order of 25%If M* � 1, lineages cross the habitat quickly relative to
the rate of the coalescent process. If M* � 1, lineage greater than that expected under the SNCM. For values
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of M* � 1, slopes are consistently �0.05, suggesting 4–6. This approach possesses the advantage of explicitly
verifying the assumption of convergence to the SNCM.that for these sets of parameter values, the error intro-

duced by this approximation will be �5%. The points It is also possible to derive an expression for the long-
term effective population size from classical populationcorresponding to the curves in Figure 5 are derived

from 100,000 replicate simulations and are represented genetics results by Maruyama (1972). For a toroidal
habitat formed by the direct product of two circles ofby solid circles. Crosses represent the outcome of 10,000

simulations. lengths L 1 and L 2, the effective population size is given
by Equation 4 [(A36) in the appendix]:Analogous simulations for a toroidal habitat pro-

duced qualitatively similar results (data not shown), but
Ne � N � �

∞

m��∞
�
∞

n��∞

1

Exp(4�2�2((m2/L 2
1) � (n2/L 2

2))) � 1
.with the SNCM applied to values of M* � 0.25. Intu-

itively, a torus whose major axis is of length L 1 represents (4)
a less extended habitat than a rectangle of length L 1.
Specifically, a lineage need travel only a distance L 1/2 Computation of Equation 4 is feasible because the terms
to have crossed the toroidal habitat. Since M* is propor- of the sum become small as either n2 or m2 becomes
tional to 1/L 2

1, this produces the factor of four difference large. Charlesworth et al. (2003) present an excellent
in the value of M* at which the long-term behavior approximation to Equation 4 for the case where L �
changes from a genealogical process that is well approxi- L 1 � L 2. Translated into the terms of this article, Equa-
mated by the SNCM to one that is expected to produce tion 9 of Charlesworth et al. (2003) is
longer coalescence times for the deepest branches.

The conditions under which the SNCM approxima- Ne � N �1 �
2 Log(K L/�)

Nb � , (5)
tion holds bear some resemblance to the strong migra-
tion limit (Nagylaki 1980, 2000; Notohara 1993). How-

where K � 0.24 for a Gaussian dispersal profile (Bartonever, the conditions considered here are less stringent.
et al. 2002). For the case of a rectangle of lengths L 1In the strong migration limit, the location of each lin-
and L 2, a slightly modified version of Equation 4 yieldseage becomes independent of the locations of the other
a reasonable approximation to the long-term effectivelineages. In the model considered here, where conserva-
population size:tive migration is assumed, this would correspond to

the limit in which the effective population size would
Ne � N � �

∞

m��∞
�
∞

n��∞

1

Exp(2�2�2((m 2/L 2
1) � (n2/L 2

2))) � 1approach the census size, and the duration of the scat-
tering phase would approach zero. The regime consid-
ered here corresponds to those conditions under which � �

∞

m��∞

1

Exp(√2�2�2(m 2/L 2
1)) � 1the long-term coalescent process appears to be reason-

ably well described by the largest nonunit eigenvalue
� �

∞

n��∞

1

Exp(√2�2�2(n2/L 2
2)) � 1

. (6)of the corresponding Markov chain transition matrix.
Furthermore, a range of cases exists (where M* � 1,
or, equivalently, Nb � 4�r, where r is the ratio of the Equations 4 and 6 were compared with values derived

from simulations (Figure 7). Each simulation-derivedlengths of the major and minor axes of the habitat)
where the eigenvalues corresponding to subsequent co- effective population size was taken from the last point

in a skyline plot like those in Figures 4 and 5. If we plotalescent events bear the same relation to each other as
those in the SNCM do. In this range, migration is not Ne directly, it is not possible to get clear visual separation

between the various curves at all values of � simultane-strong enough to eliminate geographic structure com-
pletely, but the primary effect of limited gene flow is to ously. Therefore, for clarity of presentation, simulation

and analytic values are given in terms of FST (� (Ne �alter the constant factor by which the coalescent process
is rescaled. Figure 4 (where M* � 9) presents an exam- N)/Ne). For a fixed value of N, higher values of FST

correspond to higher values of Ne. The fit is reasonableple of a degree of population structure falling within
this range. For more restricted gene flow (M* � 1), over the sets of parameter values considered. The total

habitat area is the same for all curves in Figure 7.this rescaling is not constant throughout the coalescent
process, leading to the same sort of effects on tree shape The effective population size increases with the total

population size and decreases with increasing dispersalthat would be expected from a population that had a
larger effective population size in the past. rate. In the limit of high dispersal, the population be-

comes effectively panmictic, and Ne is equal to N. The
long-term effective population size is also a function of

EFFECTIVE POPULATION SIZE
the habitat geometry. For fixed values of A, � (and
therefore N), and �, a rectangular habitat will have aConstructing an analytic description of the collecting

phase requires knowledge of the effective population larger value of Ne than a torus of the same dimensions.
Intuitively, this is a consequence of the fact that twosize. One obvious method for determining this value is

through the sort of simulations used to generate Figures lineages can be functionally separated by a greater dis-
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THE COALESCENCE PROBABILITY DISTRIBUTION

The only remaining problem is the choice of the time
� at which we make the transition from the scattering
phase to the collecting phase. Under many models em-
ploying separation of timescales, a point exists in the
genealogical process at which the collecting-phase de-
scription becomes completely accurate. In this model,
by contrast, there is no finite time for which all geo-
graphic information has been lost. Rather, the genealog-
ical process asymptotically converges to the collecting
phase. Thus, there is no single correct choice for �. I
present two methods for calculating �, each of which is
dependent on the number of images considered in the
analysis. Both have the feature that the results will be

Figure 7.—Effective population size and habitat geometry. relatively insensitive to small changes in �. The accuracy
The long-term effective population size was determined from of the description is improved by increasing the number
simulations similar to those used to generate Figure 5. For each

of images considered, but so is the computational bur-set of parameter values, 100,000 genealogies were generated,
den. Furthermore, the approximations used becomeand the effective population size was taken to be the average
less valid as t becomes larger. The choice of the numberwaiting time for the last coalescent event. These values are given

as FST values [(Ne � N)/Ne] for clarity of presentation. The of images, or image radius (see Figure 3), will therefore
habitats included here are a 10 � 10 torus with N � 10,000 be governed by this trade-off.
(solid diamonds), a 25 � 4 torus with N � 10,000 (open circles),

The first method for calculating � applies to samplesa 10 � 10 rectangle with N � 10,000 (crosses), a 25 � 4 rectangle
drawn from nearby locations. For such samples, the ratewith N � 10,000 (solid circles), and a 10 � 10 rectangle with

N � 100,000 (triangles). For each of these habitats, a number of of coalescence will be �1/Ne in the recent past and
different dispersal rates (�) were considered and are represented then decay asymptotically toward 1/Ne. The scattering-
along the x-axis. Expected values from Equations 4 and 6 (for phase description using a finite number of images will
toroidal and rectangular habitats, respectively) are indicated by

provide a good approximation to the coalescent processsolid lines. Agreement is good over the cases considered, includ-
at short timescales, but with a coalescence rate thating conditions for which M* � 1.
decays to zero. It is appealing, therefore, to set � to the
point where the rate of coalescence is equivalent under

tance in a rectangle than in a torus. The maximum the two descriptions. This point will be close to the time
distance between any two points in an L 1 � L 2 rectangle when the rates of coalescence are equal if we neglect
is √L 2

1 � L 2
2 , whereas in a torus it is 1⁄2√L 2

1 � L 2
2 . Recalling interference between lineages in both processes:

that we have assumed that L 1 � L 2 , Ne increases with
L 1/L 2 in both the rectangular and toroidal geometries. �

m

i�1

e�
2
i/� �

� Nb
N

. (7)
The intuitive explanation for this effect is similar to that
for the difference between the rectangle and torus. The

The term on the left-hand side of Equation 7 is summedmore protracted the rectangle, the greater the possible
over all image distances. Figure 8 compares the distribu-distance separating two lineages.
tion of coalescence times for three different choices ofA number of the points plotted in Figure 7 corre-
the image radius for a pair of samples drawn from thespond to conditions for which M* � 1. It is worth noting
adjacent locations in a rectangular habitat. The dip inthat Equations 4 and 6 appear to provide reasonable
the plot at t � 2 is the result of substantial inaccuraciesapproximations for the expected waiting time for the
in Equation 2 for very small values of t. If the details ofmost ancient coalescent event, even when the rest of
the coalescence time distribution in this region are ofthe collecting phase is not well described by the SNCM.
interest, it would be better to use the recursion equationFor example, for the 25 � 4 rectangular habitat with
of Barton and Wilson (1995), which is given in theN � 10,000 and � � 0.1 (M* � 0.16), the effective
appendix as Equation A1. For times �10 generationspopulation size predicted by Equation 6 is 25,974. The
in the past, Equation 2 provides a good approximationaverage number of generations required to go from two
(see Figure 2).lineages to the common ancestor of the entire sample

For a pair of samples drawn from two more distantin 1 million simulated genealogies was 25,894. The
locations, there may be more than one value of � thatmean wait times for the next four most ancient coales-
will satisfy Equation 7, in which case the largest valuecent events (each scaled by � i

2� were 22,835, 21,280,
should be used as the transition time. For two samples20,290, and 19,612. This suggests that Equations 4 and
drawn from widely separated locations, the rate of co-6 may provide a valid description of the collecting phase
alescence will initially be close to zero and will graduallyeven for some cases where M* � 1, so long as our

analysis is restricted to a pair of samples. approach 1/Ne without ever exceeding it. Thus, for
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Figure 8.—Effect of image number on the coalescence time Figure 9.—Effect of image number on the coalescence time
probability distribution. This is identical to Figure 8 (N �probability distribution. The distribution of coalescence times

was determined using three different choices for the number 10,000; Nb � 113; � � 0.3; Ne � 10,669), but with the two
samples drawn from locations (2.0, 2.0) and (7.0, 9.0). Transi-of images (m � 4, 17, and 50). The habitat is a 10 � 10 square

with � � 100 and � � 0.3 (N � 10,000; Nb � 113). The tion times were determined from Equation 8: � � 408 for m �
10; � � 503 for m � 16; � � 676 for m � 39. As was the casesamples are from adjacent locations at (1.95, 2.0) and (2.05,

2.0). The effective population size from Equation 6 is 10,669. with Figure 8, the three probability distributions are in close
agreement except in the vicinity of the transition point.The transition times were determined from Equation 7: � �

308 for m � 4; � � 454 for m � 17; � � 759 for m � 50.
Crosses indicate the probability distribution determined from
100,000 simulated coalescence times. Older coalescence rates validation for the approximations used, Equations A23
represent the average rate over a range centered on that

and A28 have been compared with Monte Carlo resultsmarker. For example, the mark at t � 30 represents the average
for a few particular parameter combinations (Figurerate from t � 25–35; the mark at t � 3000 is the average

from t � 2500–3500. The predicted coalescence probability 10). These data illustrate the dependence of the coales-
distribution is very similar for the different values of m except cent process on location within the habitat as well as the
in the vicinity of the transition between the scattering and distance between samples. As expected from previous
collecting phases. The dip in the analytic values at t � 2 results

analyses (Maruyama 1970c,d, 1972; Fleming and Sufrom the fact that this probability distribution was derived by
1974; Malécot 1975; Nagylaki and Barcilon 1988;subtracting the CDF at t � 1 from the CDF at t . The CDF

determined by Equation 2 significantly underestimates the Hey 1991; Herbots 1994, pp. 66 and 145–146; Wilkins
probability of coalescence for very small values of T, and the and Wakeley 2002), coalescence time increases with
value of the CDF at T � 1 was taken simply to be 1/Nb. the distance between samples and is greater for samples

drawn farther from the edge of the habitat.

some pairs of sampling locations, there will be no value
DISCUSSIONof � that will satisfy Equation 7. Considering a finite

number of images, the coalescence rate given by the
There are a few different ways in which we can imag-

scattering-phase description will increase to some maxi-
ine putting the results of this analysis to use. First, the

mum and then decline to zero in the distant past. The
expressions derived here can provide the basis for a

coalescence rate at that maximum will be closer to 1/Ne more sophisticated analysis of certain geographically
for larger numbers of images. Under these conditions, I

structured populations. For example, a common
suggest setting � to a value that gives this maximum,

method of estimating gene flow is to regress some func-
which is found by solving Equation 8 for �: tion of observed pairwise FST values against expected

values under isolation by distance (e.g., Rousset 1997).
�
m

i�1
�1 �


 2
i

� �e�
2
i/� � 0. (8) These expected values are typically derived from models

that assume either an unbounded habitat or periodic
Figure 9 compares the distribution of coalescence times boundary conditions (the circular, or toroidal, stepping
for a pair of samples drawn from two widely separated stone). Results such as these could be used to incorpo-
locations for three different choices of the number of rate additional information about sampling location
images. into the derivation of expected pairwise values. A maxi-

Taken together, Equations 2–8 allow us to construct mum-likelihood approach described by Tufto et al.
approximate expressions for the distribution of coales- (1996) is based on the geographical pattern of covari-
cence times for pairs of sequences drawn from a rectan- ance of allele frequencies. Pairwise results can be used to
gular habitat. The details of constructing this distribu- convert demographic features (local dispersal behavior,

population density, etc.) into a geographically explicittion are provided in the appendix. To provide some
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Figure 10.—The coalescent in a bounded habitat. Values derived from simulations for the cumulative density function of the
coalescence time for a pair of sequences are compared to values given by Equations A23 and A28. Three sampling locations
from a rectangular habitat of dimension 10 � 5 were considered: (1, 1), (8, 2), and (6, 3). For each of the six pairs of locations
(a–f), 100,000 coalescence times were simulated with N � 10,000 (� � 200). Analytic results derived from equations in the text
are indicated by solid lines, and simulation results by crosses or solid and open circles. The three dispersal rate values were used,
and the corresponding long-term effective population sizes were determined using Equation 6: � � 0.15 (Nb � 56.5, Ne �
11,454, solid circles); � � 0.25 (Nb � 157.1, Ne � 10,483, crosses); and � � 0.4 (Nb � 402.1, Ne � 10,235, open circles). The
transition times were determined from Equation 7 (a–c and f) or Equation 8 (d and e). The numbers of images used in a–f
were 27, 30, 20, 18, 23, and 18, respectively.

covariance matrix. Similarly, these results could be used Carlo (MCMC)-based approaches to the analysis of coa-
lescent processes typically rely on having an analyticas the basis for a more sophisticated version of any

method of analysis relying on pairwise comparisons. expression for the waiting time until the next event
(coalescence, migration, recombination, etc.). For theThe fact that the separation-of-timescales approach

provides a reasonably accurate approximation has impli- simple case of n lineages in a panmictic population,
there are n � 1 coalescent events. The waiting time tocations both for computational methods of analyzing

geographic structure and for the interpretation of geo- go from k to k � 1 lineages is exponentially distributed
with mean �k

2�/N. Thus, one complete genealogy cangraphic patterns of genetic diversity. Markov chain Monte
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may be relevant to efforts to use genealogical structurebe constructed simply by generating n � 1 exponential
to infer the existence of barriers to gene flow. First, thewaiting times (see, e.g., Hudson 1990). The computa-
duration of the collecting phase is longer than that oftional time required is roughly independent of the pop-
the scattering phase by a factor on the order of Nb.ulation size. One of the challenges in applying MCMC
This means that in most populations, the scatteringsampling in a continuous habitat is that analogous ex-
phase will account for only a tiny fraction of the geneal-pressions for these waiting times are not readily available.
ogy. This is consistent with previous arguments that thePut another way, the waiting time to the next “event” is
deep branches in any genealogy are unlikely to carryalways one generation, since each lineage moves every
useful information about long-term patterns of genegeneration. When lineages are far apart, their move-
flow under equilibrium conditions.ment can be drawn from a Gaussian spanning several

I have proposed the term M* as a useful metric forgenerations. However, when they are close together,
characterizing the nature of the genealogical processevery generation must be considered explicitly.
in the collecting phase. When M* � 1, the collectingThis analysis indicates a class of models for which
phase is well approximated by the SNCM. The widethe long-term coalescent behavior is independent of the
spread of the points in the M* � 1 region of Figure 6original sampling scheme. Under the equilibrium model,
suggests that M* is not sufficient to fully characterizethere is a range of parameter values where this long-term
the collecting phase in those cases where it deviatesbehavior converges on the standard neutral coalescent
significantly from the panmictic process and shouldmodel with some effective population size that depends
therefore be used simply to characterize a particularon the local dispersal behavior and the geometry of the
population as falling within one of the two regimes. M*habitat. This location-independent long-term behavior
is defined as N�2/L 2

1, where L 1 is the length of the longertypically describes the majority of the tree depth. Thus,
of the two habitat axes. The condition M* � 1 can be re-for an arbitrary number of samples, genealogies could
written as Nb � 4�r, where r is the ratio of the lengthsbe generated computationally using a two-step process.
of the two habitat axes. Since r can be no smaller thanThe recent part of the genealogy can be generated by
1, no population is expected to converge to the SNCMexplicitly simulating every generation. At some point
if Nb � 4� (�12.5). The more extended the habitat(the same point where we switch from the scattering
becomes, the larger the neighborhood size must be forphase to the collecting phase), this simulation process
this convergence to occur.could be replaced with the conventional process based

The simulation work by Irwin (2002) in a one-dimen-on waiting times. Such an approach might be used to
sional habitat showed that under certain parameter val-improve the efficiency of computationally intensive ap-
ues genealogies generated from a model of simple isola-proaches to the analysis of geographically structured
tion by distance could give the appearance of a deepdata.
phylogeographic break, which could lead to the errone-For many populations, the deep branches of genealo-
ous inference of a barrier to gene flow. This signaturegies will be shaped by nonequilibrium processes (e.g.,
is in the form of coalescence into two geographicallypopulation bottlenecks, range expansions, selection at
distinct clades, with a deep genealogical split betweenlinked loci, etc.) and by geographical heterogeneity
them. Irwin notes that the likelihood of this outcome(e.g., barriers to gene flow). A separation-of-timescales
increases as the dispersal distance (�) or the populationapproach may lead to methods for separating isolation-
size (N) decreases. Inspection of Figure 4 from Irwinby-distance effects from these sorts of nonequilibrium
(2002) indicates that the region of parameter values forevents. For example, MCMC integration of the scatter-
which deep phylogeographic breaks are likely corre-ing phase could be used to project a set of samples
sponds to values of M* that are less than one.from particular locations onto a distribution of ancestral

Of course, the variance of the coalescent process issamples at the boundary between the scattering and
large, even in models lacking geographic structure, andcollecting phases. This ancestral distribution could then
deep genealogical divisions can arise by chance. In at-be queried for patterns associated with particular demo-
tempting to assess the likelihood of the existence of agraphic histories or for evidence of additional subdivi-
barrier to gene flow, the best course of action is to considersion (in the form of geographic structuring of clades
multiple independently segregating loci. While individualbeyond what is explained by ongoing local dispersal).
loci may manifest deep phylogeographic breaks by chance,The application of multiple timescales to separate local
in the absence of linkage, multiple loci are unlikely todispersal from other factors shaping genealogical struc-
manifest geographically coincident deep genealogicalture could provide a valuable tool in the development of
divisions unless there is, or has been, some barrier tostatistically rigorous phylogeographic methods (Knowles
gene flow. However, when only a single locus is available,and Maddison 2002; Knowles 2004).
determination of whether M* is likely to be less thanThe analysis presented here also suggests certain spe-
or greater than one could serve as a check on the plausi-cific features of the genealogical process that may aid
bility of attributing deep phylogeographic structure toin the interpretation of empirical data. In particular, the

long-term coalescent behavior observed in simulations simple isolation by distance in individual cases.
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very large values of j. For this reason, this approach is
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valid only where the series of sums can be truncated.
Since the lead term of �j has the form j Log j�1(t � 3/2 �

APPENDIX j), terms in the sum should be decreasing as long as
Two sequences from the same location: I begin by Log(t) � Nb. Substituting these approximations into

deriving the distribution of coalescence times for a pair (A2) yields an expression of the form
of sequences drawn from the same location. Following
Barton and Wilson (1995, 1996), the probability that f(t) �

1
Nb t

�
1

Nb2 t
(2 Log(t � 1/2) � 2
)

the two lineages coalesce t generations in the past is
given by the recursion equation:

�
1

Nb3 t
(3 Log2(t � 3/2) � 2 Log(t � 1/2) � 2
) � etc.

f(t) �
1

Nb t
�

1
Nb�

t�1

i�1

f(t � i)
i

. (A1) (A5)

Owing to the form of the approximations in A4, anyThis equation can be rewritten in a nonrecursive form as
term occurring in a particular �j will appear in all subse-
quent terms �j ��j . If we collect these terms together, thisf(t) �

1
Nb t

�
1

Nb2 �
t�1

i�1

1
(t � i)i

�
1

Nb3 �
t�1

i�1

1
(t � i)�

i�1

j�1

1
(i � j)j expression becomes

f(t) �
1

Nb t �1 �
2 Log(t � 1/2) � 2


Nb �1 �
1

Nb
�

1
Nb2

�
1

Nb3
� etc.��

1
Nb4 �

t�1

i�1

1
(t � i)�

i�1

j�1

1
(i � j) �

j�1

k�1

1
( j � k)k

� etc . (A2)

The additional terms continue to alternate sign, with �
3 Log2(t � 3/2)

Nb2 �1 �
1

Nb
�

1
Nb2

�
1

Nb3
� etc.� � etc.� .

each subsequent term multiplied by 1/Nb and includ-
(A6)ing an additional nested sum. Because each summation

is to the previous index minus 1 (e.g., the sum on j is We can then approximate the series of 1/Nbj terms by
from 1 to i � 1), the number of nonzero terms in 1/(1 � (1/Nb)) to yield an expression of the form
Equation A2 is equal to t (e.g., for t � 3, only the 1/

f(t) �
1

Nb t �1 �
1

1 � (1/Nb) �2 Log(t � 1/2) � 2


Nb
�

3 Log2(t � 3/2)
Nb2Nb, 1/Nb2, and 1/Nb3 terms are not equal to zero).

The sums in Equation A2 can be eliminated using some
approximate forms. Denoting the nested sum following �

4e�1/t Log3(t � 5/2)
Nb3

�
5e�5/t Log4(t � 7/2)

Nb4

the 1/Nbj term as �j , Equation A2 can be written as

�
6e�14/t Log5(t � 9/2)

Nb5
�

7e�30/t Log6(t � 11/2)
Nb6

� etc.�� .

f(t) � �
t

j�1

(�1)j�1

Nb j
� j . (A3)

(A7)
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In principle, this form will include terms up through F(T ) �
Log(T ) � 


Nb
�

1
1 � (1/Nb) �Log(T )

Nb
�

2
(Log(T ) � 
 � 1)
Nb2 �

�
1

1 � (1/Nb) �Log(T )
Nb

�
Log2(T )

Nb2
�

Log3(T )
Nb3

�
Log4(T )

Nb4
�

Log5(T )
Nb5

� etc.�te
��i�3

k�1k2/tLogt�1(3/2)
Nbt�1

. (A8)

�
1

1 � (1/Nb) � 
2

Nb2
�


3

Nb3
�


4

Nb4
�


5

Nb5
� etc.� . (A13)For purposes of calculation, however, it will be useful

to truncate Expression A7 after a small number of terms.
This can be further simplified toOnce again, the magnitude of the terms in (A7) will

diminish so long as Log(t) � Nb and will decrease more
F(T) �




Nb
�

Log(T) � 2
(Log(T) � 
 � 1)
Nb(Nb � 1)rapidly for smaller values of Log(t)/Nb. The corre-

sponding CDF, or the probability that our two lineages
coalesce no more than T generations in the past, is �

Nb
Nb � 1� Log(T)

Nb � Log(T)
� �

i�2

(�1)i 
i

Nbi�, (A14)
derived simply by summing Equation A7 from 1 to T:

where 
1 � 
. This gives a final form for the CDF that
F(T ) � �

T

t�1

f(t). (A9)
does not include any nested sums. Inspection of Equation
A14 supports our prior conclusion that this approach is

The form of (A7) includes different numbers of terms valid only for Log(T) � Nb, since F(T) cannot be �1.
for different values of t , and the inclusion of the 1/ Furthermore, inspection of the series of 
i terms in (A12)
(1 � (1/Nb)) term assumes the existence of subsequent suggests that the terms in the sum in (A14) will decrease
terms. However, a reasonable approximation of the CDF in magnitude so long as Nb � �15. A number of the
can be derived for larger values of T : approximations invoked here assume the existence of an

infinite number of terms. For very small values of T, this
F(T ) � �

T

t�1

1
Nb t leads to significant errors (see Figure 8), but appears to

be reasonably accurate for T � 10 (Figure 2).
�

1
1 � (1/Nb)��

T

t�2

2 Log(t � 1/2) � 2


Nb2 t
� �

T

t�3

3 Log2(t � 3/2)
Nb3 t Two sequences from different locations: Consider the

case of two samples drawn from locations separated by a
� �

T

t�4

4e�1/t Log3(t � 5/2)
Nb4 t

� �
T

t�5

5e�5/t Log4(t � 7/2)
Nb5 t

� etc.� . distance x. As before, I start with the recursion derived by
Barton and Wilson (1995, 1996). The probability that(A10)
the two lineages coalesce t generations in the past is given

The 1/Nb sum is approximately equal to (Log(T ) � by

)/Nb. The “2
” term can be similarly approximated
as 2
(Log(T) � 
 � 1)/(Nb2 � Nb). The other terms f(t) �

e�x2/4�2t

Nb t
�

1
Nb�

t�1

i�1

f(t � i)
i

. (A15)
asymptotically approach a similar form such that for large
T Equation A10 can be written as If we rescale distance relative to dispersal, defining 
 �

x/2�, and assume that Nb is sufficiently large that we canF(T) �
Log(T ) � 


Nb neglect terms of order 1/Nb3, this can be rewritten as

�
1

1 � (1/Nb) �(2
(Log(T ) � 
 � 1)
Nb2
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Log2(T ) � 
2

Nb2 f(t) �
e�
2/t

Nb t
�

1
Nb2 �

t�1

i�1

e�
2/i

(t � i)i
. (A16)

�
Log3(T ) � 
3

Nb3
�

Log4(T ) � 
4

Nb4
�

Log5(T ) � 
5

Nb5
� etc.� .

Equation A16 can be approximated by
(A11)

f(t) �
e�
2/t

Nb t �1 �
1

Nb
��0,


2

t � 
*
�


2

t
,


2


*
�


2

t ��,Approximate values for the first few 
i terms are

(A17)
2 � 0.849
where 
* is 0.562, and �(0, z1, z2) is the incomplete gamma
3 � 7.78
function, defined as


4 � 72.4
�(0, z1, z2) � �

z
2

z2

e��

�
d� . (A18)
5 � 882


6 � 11,680
Unfortunately, a general approximate expression for


7 � 160,200 the CDF corresponding to Equation A17 is not readily
forthcoming. The CDF can, of course, be written as


8 � 2,265,000. (A12)

F(T ) � �
T

t�1

e�

2/t

Nb t�1 �
1

Nb
��0,


2

t � 
*
�


2

t
,


2


*
�


2

t ��.Equation A11 can then be rearranged to collect the Log
terms: (A19)
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For t � 
*, Equation A17 can be approximated by for all combinations of integers i and j. If we were to
assume periodic boundary conditions (a torus formed
by the direct product of two circles of length L 1 andf(t) �

e�

2/t

Nb t�1 �
1

Nb
��0,


2 
*
t2

,

2


*��. (A20)
L 2), we could apply a similar method of images. How-
ever, rather than reflecting the rectangular habitatBoundary effects and images: The effect of habitat
across each of its boundaries, the set of image habitatsboundaries is approximated by an approach analogous to
would be constructed by a series of translations. Thethe “method of images” in electrostatics. For a pair of
infinite plane would again be tiled with habitat images,sequences drawn from the same location a distance z from
but in this case, each image would have the same orienta-a reflecting boundary, the coalescence probability can be
tion as the original. The locations of the images of (x 1,modeled as the combination of two unbounded coalescent
y 1) analogous to expression A21 would beprocesses: one for two sequences from the same location

and one for two sequences separated by a distance 2z (
 � (iL1 � x1, jL2 � y1). (A22)
z/�). This can be imagined as taking one of the two

Although the number of such images is infinite, insamples and creating an additional, “mirror image” sample
practice, a particular image will not contribute signifi-by reflection across the boundary. The coalescent process
cantly to the coalescent process so long as t � 
2, as canfor two sequences drawn from different locations can be
be seen from Equation A17. Thus, the number of imagesconstructed in an analogous manner. For two sequences
that need to be considered depends on the number ofthat are positioned at distances x1 and x2 from the bound-
generations over which geography needs to be consid-ary and separated by a distance y parallel to the boundary,
ered explicitly. This question is addressed below. Forthe two coalescent processes have characteristic distances
the moment, simply note that in most circumstances,
1 � √(x1 � x2)2 � y2/2� and 
2 � √(x1 � x2)2 � y2/2�.
the number of images is unlikely to be large. ImagesHere 
1 corresponds to the direct distance between the
corresponding to a large number of reflections repre-two locations, and 
2 corresponds to the distance from
sent coalescent events that occur only after a lineagethe location of one to the location of the mirror image
has traversed the habitat multiple times, at which pointof the other. Note that the distance between one sample
the original sampling locations are likely to have be-and the mirror image of the other sample does not
come unimportant.depend on which sample you choose to mirror across

Given these expressions for the coalescent process, itthe boundary.
is possible to construct an expression for the distributionCorners of the habitat, where two boundaries meet at
of coalescence times for a pair of sequences sampleda right angle, are modeled similarly, with two sequential
from arbitrary locations within a rectangular habitat.reflections, first across one boundary, and then across
Accounting for the boundary conditions requires assum-the other. Note that this creates three image samples,
ing multiple competing coalescent processes that occurone across each of the two boundaries, and one that is
simultaneously and correspond to reflections off variousthe image of one of those two. Consider again the case
habitat boundaries. For example, consider two se-of two sequences sampled from the same location at
quences sampled from the same location a distance 
some distance from a rectangular corner of the habitat.
from a habitat boundary. The probability that coales-If there is one boundary a distance 
1 from the pair and
cence does not occur is equal to the probability thata perpendicular boundary a distance 
2 from the pair, we
coalescence described by Equation A14 does not occurmust consider three coalescence-at-a-distance processes
and that coalescence described by Equation A19 doesusing distances 
1, 
 2, and 
3 � (
2

1 � 
 2
2)1/2. The pro-

not occur. Each boundary must be accounted for in thiscess of constructing image locations is illustrated by
way, as well as corners. For habitats that are much longerFigure 3.
in one dimension than in the other, multiple reflectionsFor samples drawn from a location between two paral-
in the shorter dimension should be included, to accountlel boundaries, we must consider not only the images
for the time required for diffusion to occur across theacross each of those boundaries, but also images corre-
habitat in the longer dimension. For two samples drawnsponding to reflections across both boundaries. In fact,
from different locations, the competing coalescent pro-we must consider reflections of the habitat across each
cesses will all be described by Equation A18, with aof its boundaries, reflections of each of those image
different value of 
 corresponding to the distance be-habitats across each of its boundaries, and so on. We
tween one sample location and each of the images ofcan imagine the entire infinite plane tiled with habitat
the other sample location.images, each of which has a mirror-image orientation

The method of images provides a rigorous method ofto each of its neighbors. Specifically, if we assume a
dealing with boundary conditions only for a few specificrectangular habitat ranging from 0 to L 1 in one dimen-
habitat geometries. Here I have discussed the treatmentsion and 0 to L 2 in the other, the images of a point at
of linear boundaries that meet at a right angle, which(x 1, y 1) can be written as
is sufficient to characterize the coalescent process in a
rectangular habitat. Similar methods could be used to(2iL1 � x1, 2jL2 � y1) (A21)
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derive image locations for certain other special habitats, rate is therefore given by the approximation to the col-
lecting phase description that also ignores these interac-such as an equilateral triangle. For an arbitrary two-

dimensional habitat, however, multiple reflections will tions. Ignoring those interactions is equivalent to con-
sidering the unconditional distribution of each lineagenot tile the plane cleanly. In certain cases it might be

possible, however, to describe the coalescent behavior location, where each of the two lineages would be
equally likely to be anywhere in the population, and theon a very short timescale by considering only reflections

off of nearby boundaries. conditional coalescence probability would equal 1/N.
The point at which the scattering and collecting phaseAs indicated above, the coalescent processes charac-

terized by the 
i terms are competitors with one another. coalescence rates are equal is thus approximately at the
value of � that satisfiesThat is, the total probability of coalescence is equal to

the probability that coalescence occurs by any one of
the processes. If the coalescent process is broken down �

m

i�1

e�
2
i/� �

� Nb
N

. (A26)
into m subprocesses, each of which is characterized by
a distance 
i, then the CDF is given by This formulation means that we are concatenating the

two CDF curves near the point where they are tangentialF(T ) � 1 � �
m

i�1

(1 � F(T, 
 i)), (A23)
to each other.

Equation A26 works well for pairs of sampling loca-
where F(T, 
i) refers to Equation A14 if 
i � 0 or Equa- tions that are close together (
1 � 0). For example, for
tion A19 if 
i � 0. Assuming the probability of coales- a pair of points sampled from adjacent locations, the
cence in any given generation to be small, the PDF can approximate coalescence rate given by expression (A25)
be written as will start at its maximum and decrease as t increases,

and there will be a single value of � for which Equationf(t) � �
m

i�1

f(t, 
 i)�
j�i

(1 � F(t � 1, 
 j)), (A24)
A26 will hold. For two samples at a distance, expression
(A25) will first increase and then decrease with increas-where f(t, 
 i) refers to Equation A7 if 
i � 0 or Equation
ing t. Thus, there may be two or more values of � forA17 if 
i � 0.
which Equation A26 will hold. In this case, the largestTransition to the collecting phase: For a pair of lin-
value of � that satisfies (A26) should be used. Finally,eages, the probability of coalescence in a particular gen-
if the separation between the two sampling locations iseration, conditional on not yet having coalesced, ap-
large enough, there may be no value of � for whichproaches some constant rate as t becomes large. This
Equation (A26) holds. That is, the rate of coalescencerate represents the largest nonunit eigenvalue of the
may approach 1/Ne asymptotically. In this case, an alter-coalescent process and is equal to 1/Ne. Unlike other
nate candidate for � is the point where expression (A25)models invoking a separation of timescales, in this
reaches its maximum. Setting the first derivative ofmodel there is no discrete point at which the collecting-
(A25) equal to zero yields the following condition:phase description becomes completely accurate. Put an-

other way, the coalescent process does not become com-
�
m

i�1
�1 �


2
i

� �e�
2
i/� � 0. (A27)pletely independent of the original sampling locations

at any finite time. The challenge is thus to choose a
transition time � that is large enough that the process The form of Equations A25–A27 makes it apparent
is largely independent of sampling location, but small that the transition time � will depend on the number
enough to provide substantial computational savings, of image locations considered: the more image loca-
and to limit the scattering phase to the regime for which tions, the longer the duration of the scattering phase.
the approximations invoked above hold. A candidate For any given selection of images, there will be a certain
for � is the point where these two conditional coales- amount of error introduced near the transition between
cence rates are equal, where the rate of coalescence the phases. Images just beyond the range of those in-
described by the scattering-phase equations is equal to cluded in the analysis will begin to contribute signifi-
(1 � F(�))/Ne. However, since the separation-of-time cantly to the coalescence probability near the end of
scales description is not very sensitive to the exact choice the scattering phase. Thus, for values of T approaching
of �, we can use a much simpler formulation to derive �, the CDF provided by these equations will tend to
our transition time. If we consider only terms of order underestimate the true coalescence probability. How-
1/Nb, the conditional rate for the process described by ever, the magnitude of the error is small and does not
the scattering phase becomes approximately depend strongly on the exact number of images consid-

ered (see Figures 8–10). The most important considera-
�
m

i�1

e�
2
i/t

t Nb
. (A25) tions in constructing the set of image locations are to

include at least the first reflection off of each boundary
and to include all images whose corresponding dis-The rate given by Equation A25 neglects all interaction

between the two lineages. The best comparison for this tances 
i are less than the maximum distance 
max associ-
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ated with any of the included images. Depending on
f0 �

(1 � u)2S
N � (1 � u)2S

. (A31)the particular sampling locations considered, there may
be certain values of 
max that will work better than others.

Equations A30 and A31 correspond to Equations 3–8The error near the transition will be smallest when the
and 3–4 in Maruyama (1972). They differ from thedifference between 
max and the distance 
 associated
original equations by the use of N rather than 2N, whichwith the closest excluded image is maximized.
makes them applicable to the haploid model consideredThe complete coalescent process is then described in
here. The S of Equation A31 represents the sumthe following way. For T � �, the process is described

by Equations A23 and A24. For T � �, the CDF is given
S � �

∞

m��∞
�
∞

n��∞

1
R�1

mn � (1 � u)2
. (A32)by

For the isotropic Gaussian dispersal assumed in thisF(T ) � F(�) � � �
m

i�1

(1 � F(�, 
i))�(1 � e�(T��)/Ne )
analysis, the Rmn terms are

� 1 � (1 � F(�))e�(T��)/Ne (A28)
Rmn � Exp ��4�2�2 �m

2

L 2
1

�
n 2

L 2
2
�� . (A33)

and the PDF by
Maruyama’s identity coefficients are the Laplace trans-
form of the distribution of coalescence times. That is,f(t) � � �

m

i�1

(1 � F(�, 
i))�e�(t��)/Ne

Ne
f � �

∞

0

p(t)e�2utdt . (A34)
� (1 � F(�))

e�(t��)/Ne

Ne

. (A29)
If we differentiate Equation A34 with respect to u and
then take the limit as u approaches zero, we getEffective population size: Application of the method,

and in particular, use of Equations A28 and A29, re-
�

1
2

Lim
u→0 � �f

�u � � �
∞

0

tp(t)dt , (A35)quires knowledge of the effective population size Ne that
characterizes the collecting phase. It is possible to use

where the right-hand side of Equation A35 is simply theclassical results on the rate of decrease of heterozygosity
expected coalescence time. Performing this operationin a population to derive an explicit expression for the
on Equation A30 yields the expected coalescence timelong-term effective population size. Maruyama (1972)
for a pair of sequences once equilibrium has beenprovides an expression for the probability that two alleles
reached, which is the long-term effective populationsampled from random locations in a two-dimensional hab-
size,itat are identical. Maruyama’s result applies to a toroidal

habitat formed by the direct product of two circles of
Ne � N � �

∞

m��∞
�
∞

n��∞

1
Exp(4�2�2((m 2/L 2

1) � (n 2/L 2
2))) � 1

,lengths L1 and L2. This probability is equal to
(A36)

f �
(1 � u)2(1 � f0)
N(1 � (1 � u)2)

, (A30) where the sum in Equation A36 excludes the term where
m � n � 0, which contributes the N term when the limit

where u is the mutation rate, and f0 is the probability u → 0 is taken. Computation of A36 is practical because
of identity of two sequences sampled from the same the terms of the sum become small as the absolute value

of either m or n becomes large.location, which can be written as


