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Genomic imprinting is the phenomenon where the expression of a locus
differs between the maternally and paternally inherited alleles. Typically, this
manifests as transcriptional silencing of one of the alleles, although many genes
are imprinted in a tissue- or isoform-specific manner. Diseases associated with
imprinted genes include various cancers, disorders of growth and metabolism,
and disorders in neurodevelopment, cognition, and behavior, including certain
major psychiatric disorders. In many cases, the disease phenotypes associated
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with dysfunction at particular imprinted loci can be understood in terms of the
evolutionary processes responsible for the origin of imprinting. Imprinted gene
expression represents the outcome of an intragenomic evolutionary conflict,
where natural selection favors different expression strategies for maternally and
paternally inherited alleles. This conflict is reasonably well understood in the
context of the early growth effects of imprinted genes, where paternally inherited
alleles are selected to place a greater demand on maternal resources than are
maternally inherited alleles. Less well understood are the origins of imprinted
gene expression in the brain, and their effects on cognition and behavior.

This chapter reviews the genetic diseases that are associated with imprinted
genes, framed in terms of the evolutionary pressures acting on gene expression
at those loci. We begin by reviewing the phenomenon and evolutionary origins
of genomic imprinting. We then discuss diseases that are associated with
genetic or epigenetic defects at particular imprinted loci, many of which are
associated with abnormalities in growth and/or feeding behaviors that can be
understood in terms of the asymmetric pressures of natural selection on
maternally and paternally inherited alleles. We next described the evidence
for imprinted gene effects on adult cognition and behavior, and the possible
role of imprinted genes in the etiology of certain major psychiatric disorders.
Finally, we conclude with a discussion of how imprinting, and the evolutionary–
genetic conflicts that underlie it, may enhance both the frequency and morbid-
ity of certain types of diseases.

I. Overview of Genomic Imprinting
A. What Is an Imprinted Gene?

The term genomic imprinting is typically used to refer to the phenomenon

where the pattern of expression of an allele depends on its parental origin.1 In
the simplest cases, one of the two alleles is transcriptionally silenced, while the
other is expressed. Often, however, imprinted genes exhibit complex patterns
of tissue- and isoform-specific imprinting.2–6 Some researchers will refer to a
gene being ‘‘maternally imprinted’’ or ‘‘paternally imprinted.’’ However, these
phrases are used inconsistently in the literature, leading to a degree of confu-
sion. In some contexts, the phrase ‘‘maternally imprinted’’ is used to mean
‘‘maternally silenced,’’ while in other contexts it means ‘‘maternally modified,’’
where that modification could be either silencing or activating.

It is preferable to refer to a locus as being imprinted if maternally and
paternally inherited alleles at the locus exhibit systematic expression differ-
ences, and to explicitly describe the pattern of silencing, expression, and
modification at a given locus. For example, in the mouse, the imprinted gene
Grb10 is paternally expressed in brain, but maternally expressed in the
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placenta and most embryonic tissues.7 In contexts such as this, use of phrases
such as ‘‘maternally imprinted’’ and ‘‘paternally imprinted’’ leads to unneces-
sary confusion.
B. How Common Is Imprinting?

It is common to think of genomic imprinting as a specifically mammalian

phenomenon. Consistent with this view, many of the key components and
features of the imprinting system that we find in humans appear to have arisen
before the split between marsupial and eutherian (placental) mammals.8–15

However, imprinted genes have also been identified in angiosperms (flowering
plants), where imprinted gene expression has many similarities to what we
observe in mammals, suggesting that an analogous phenomenon has evolved
independently.16

There are also imprinting-like phenomena that have been described in
various insects,17 where the term ‘‘imprinting’’ was originally coined.18,19 As for
other taxa, such as birds and fish, it is at this point unclear whether any genes
are imprinted. For several species, studies have looked at the expression of
orthologs of certain genes known to be imprinted in mammals, typically the
canonical pair of imprinted genes Igf2 (insulin-like growth factor type 2) and
Igf2r (insulin-like growth factor type 2 receptor). These studies have shown
specific genes to be unimprinted in monotremes,9,10,20 amphibians,21

birds,12,13 and fish,22,23 leading some to conclude that imprinting does not
exist in those species. However, there have been no systematic efforts to
identify imprinted genes in most species, and it remains possible that other
genes are imprinted in some or all of those species.

In humans, it is thought that somewhere between one and a few percent of
the genome is subject to imprinting, although the exact number is unknown.
The standard catalogs of imprinted genes,24,25 including only those loci for
which there is strong, direct empirical evidence, typically include fewer than a
hundred entries. However, computational studies have identified much larger
numbers of ‘‘predicted’’ imprinted genes: 600 in mice26 and more than 150 in
humans.27 Further, a pair of studies measuring the allele-specific expression
levels in the mouse brain identified approximately 1300 genes with monoallelic
or strongly biased gene expression, suggesting widespread imprinting in that
tissue.28,29 Therefore, it seems likely that the total number of imprinted genes
in humans will be greater than what is suggested by the current lists, but exactly
how much greater remains to be determined.
C. How Does Imprinting Work?

Genomic imprinting relies on the existence of differential epigenetic mod-

ifications on the maternally and paternally derived alleles at a locus. This
typically involves differential DNA methylation at CpG dinucleotides, as well
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as differential modification of histones (acetylation, methylation, etc.). These
epigenetic modifications are established during gametogenesis, with different
marks being established in the male and female germ lines. After fertilization,
these differential marks are propagated across cell divisions in an allele-specific
manner, allowing different expression to be maintained throughout develop-
ment. Epigenetic propagation involves the action of the maintenance methyl-
transferase Dnmt1, which specifically recognizes the hemimethylated form of
CpG dinucleotides that results from DNA replication. (In the hemimethylated
state, the cytosine on one strand is methylated, while the cytosine on the newly
synthesized strand is unmethylated.)

Throughout development, particularly in the earliest stages, these epige-
netic marks are also subject to various modifications and reprogramming. Most
striking is the large-scale demethylation of the paternally derived genome that
occurs after fertilization, but before fusion of the two pronuclei.30,31 Imprinted
loci are also often subject to epigenetic spreading in cis, resulting in coordinat-
ed imprinted expression among clusters of loci. Thus, many of these clusters
are defined by a suite of parent-of-origin-specific epigenetic modifications
along an entire chromosomal region, but most of these modifications will derive
from a single imprinting control region (ICR) that is differentially methylated
during gametogenesis. Often, secondary epigenetic differences are not estab-
lished until after fertilization.
D. Why Are There Imprinted Genes?

The discovery of genomic imprinting in mammals has triggered a prolifer-

ation of evolutionary theories.32,33 The theory that has received the greatest
amount of attention, and which provides the best explanation for the pheno-
typic consequences, direction of silencing, and taxonomic distribution of
imprinted genes is the kinship theory of imprinting.34–38 According to this
theory, imprinting is the result of an intragenomic conflict, where natural
selection acts differently on maternally and paternally derived alleles at the
same locus. The asymmetric action of selection is often thought of in terms of
inclusive-fitness effects: what matters in terms of natural selection is the total
number of copies of an allele that are passed on to future generations, inde-
pendent of whether those copies are passed on directly by the focal individual,
or by a relative of the focal individual who is carrying identical copies of the
allele.

This framework was developed initially in the context of imprinted gene
effects on fetal growth, where natural selection acts differently on maternally
and paternally inherited alleles at a locus that affects the magnitude of the fetal
demand on maternal resources. From the perspective of an allele, the optimal
level of resource demand is determined by a trade-off between the benefit
derived from acquiring additional resources from the mother, and fitness cost
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that results from reducing the quantity of resources available to the mother’s
other offspring. The magnitude of the fitness cost is determined by the relat-
edness of the focal allele to those other offspring, or the probability that those
offspring inherit an identical copy of the allele. For a maternally inherited
allele, that probability is 0.5, while for a paternally inherited allele, it is
somewhat less, depending on the degree of polyandry in the population (the
probability that the mother’s other offspring have a different father).

Thus, at the margins, a paternally inherited allele will favor greater demand
on maternal resources, while a maternally inherited allele will favor reduced
demand, preserving more resources for the other offspring. At an unimprinted
locus, alleles are constrained to exhibit a single pattern of expression, irrespec-
tive of whether they are inherited from a male or a female. In that circum-
stance, we expect natural selection to settle on a demand level somewhere
between the maternal and paternal optima. However, at an imprinted locus,
where alleles acquire the ability to take on two different conditional expression
strategies, the evolutionary dynamics resulting from the intragenomic conflict
lead to the transcriptional silencing of one of the two alleles. At a locus where
increasing gene expression results in a greater demand on maternal resources
(e.g., growth factor like Igf2), it is the maternally inherited allele that becomes
silenced, while the paternally inherited allele is expressed at the level that
maximizes its (inclusive) fitness. At a locus where higher gene expression
reduces demand (e.g., a growth suppressor like Igf2r), the opposite pattern
results, with paternal silencing and maternal expression.

In recent years, this theory has been extended to include other types of
interactions among related individuals. In particular, the interaction between
father and offspring within the nuclear family39 and social interactions in a
population with limited dispersal.40,41 The kinship theory of genomic imprint-
ing was originally formulated within the context of mother–offspring interac-
tions leaving the father outside of the picture. In mammals, fathers start
contributing resources after weaning and even if the amount of resources
contributed by the father might be less than the amount contributed by the
mother, it can reverse the direction of the imprint.39

Recent work takes the kinship theory beyond the nuclear family into a social
context.40–43 Thesemodels no longer consider interactions between ‘‘mum, dad,
and baby’’ for the allocation of parental resources, but interactions between
brothers and cousins in a viscous population competing for resources at different
developmental stages.40–43 The later models provide the theoretical foundation
for the evolution of genomic imprinting the postinfant brain. Models for the
evolution of imprinting through social interactions require that demographic
patterns (migration, reproductive success, life expectancy) differ betweenmales
and females.40,41 When females tend to migrate more than males, a juvenile in
the population is more related to her siblings, cousins, aunts, and uncles via her
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paternally inherited copy than her maternally inherited copy. Thus the mater-
nally inherited allele is selected to be more egoistic, while the paternally inher-
ited copy is selected to be more altruistic. Similar conclusions can be derived
when females show greater reproductive success and when the expected life of
females is shorter than the expected life of males.40,41
II. Disorders Associated with Particular Imprinted Genes
and Regions

Much of our understanding of the phenotypic effects of imprinted genes in
humans comes from the clinical manifestations of uniparental disomies
(UPDs), where both copies of a chromosome are inherited from the same
parent. These individuals are karyotypically normal, and, in the absence of
genomic imprinting, we might expect UPDs to be without phenotypic effect.
There are, however, two ways in which UPD can be associated with disease.
First, uniparental isodisomy (where two copies of the same chromosome are
inherited) can result in the unmasking of deleterious recessive mutations.
Second, if a chromosome harbors one or more imprinted genes, a UPD will
be associated with overexpression from imprinted loci, underexpression, or a
combination of the two. Most imprinted genes occur in clusters, such that a
UPD will typically encompass multiple imprinted genes. Thus, evidence link-
ing disorders to a particular UPD may be suggestive of a role for imprinted
genes, but this evidence becomes compelling only when systematic patterns
emerge regarding the parental origin of the UPD, or when other evidence
provides a direct link to one or more specific imprinted loci.

Imprinted genes are also subject to epigenetic dysregulation, such as
hypomethylation or hypermethylation of regulatory elements. Clustered
imprinted genes are often intricately coregulated, such that a single epimuta-
tion may alter expression of multiple imprinted genes. For imprinted loci
where a complete loss of expression is lethal, certain epimutations may produce
less severe phenotypes.

In this section, we describe the diseases that are associated with particular
chromosomal regions.
A. Chromosome 20: Pseudohypoparathyroidism and
Disorders of the GNAS Locus

1. FORMS OF PSEUDOHYPOPARATHYROIDISM
Pseudohypoparathyroidism (PHP) is associated with end-organ resistance
to parathyroid hormone (PTH).44,45 That is, PTH levels are not reduced (as in
hypoparathyroidism), but the response to PTH is diminished in a subset of its
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target cells. In fact, PHP is associated with elevated serum levels of PTH, as
well as elevated serum phosphate and reduced serum calcium. PTH normally
regulates serum calcium through its action on bone and kidney, via the Gs-
coupled receptor PTHR1, and secretion of PTH from the parathyroid gland is
stimulated by low serum calcium.46,47 PTH acts on the renal proximal tubule to
increase the level of 25-hydroxyvitamin D1-a-hydroxylase, which leads to
elevated 1,25-dihydroxyvitamin D3, and thus to enhanced intestinal absorption
of calcium and phosphate, and also mobilizes calcium and phosphate through
its action on bone.

In patients with PHP, resistance to PTH appears to be limited to the renal
proximal tubule, while the action of the hormone on bone and other tissues is
unaffected.48–50 Clinically, PHP is divided into two types, based on urinary
excretion following diagnostic administration of PTH. In PHP type I, excretion
of both cAMP and phosphate are blunted, while in PHP type II, only phos-
phate excretion is blunted.51

PHP-II is relatively rare, and the molecular and genetic basis for this
variant remains poorly understood. PHP-I is much more common and is
associated with maternally inherited heterozygous defects at the GNAS locus,
which encodes the a subunit of the stimulatory G-protein (Gsa).

52–55 The
clinical manifestation of PHP-I and related disorders depends on both the
nature of the genetic (or epigenetic) defect, and on the parental inheritance of
the affected allele. PHP-I is further divided into two subclasses, PHP-Ia and
PHP-Ib, based on the presence or absence of physical features that define
Albright’s hereditary osteodystrophy (AHO). PTH resistance coupled with
AHO is categorized as PHP-Ia, whereas PTH resistance alone defines PHP-
Ib. The physical features associated with AHO include short stature, mild
mental retardation, obesity, and characteristic bone deformations, including
shortening of the fourth and fifth metacarpals (brachydactyly).
2. TRANSCRIPTS AT THE GNAS LOCUS
The complexity of both the clinical manifestations and heritability of these
disorders derives from the extreme transcriptional complexity of the GNAS
locus. GNAS is located on chromosome 20q56,57 and is responsible for the
production of numerous transcripts, the expression of which depends on both
cell type and allelic parent of origin2–6 (see Fig. 1).

Several of the GNAS transcripts share a common set of downstream exons
(2–13), but originate from different promoters, and incorporate alternate ver-
sions of exon 1.58–60 The furthest downstream promoter is responsible for
production of the Gsa transcript and will be referred to here as the Gsa
promoter. Through alternate splicing, this transcript produces long and short
versions (Gsa-L and Gsa-S), which differ in the inclusion or exclusion of 45
nucleotides from exon 3.61 This transcript also produces the truncated Gsa-N1,
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includes exons 1–3 and exon N1, which contains an in-frame stop codon. Gsa-L
and Gsa-S perform similar functions but exhibit slight differences that remain
incompletely understood.62 Gsa-N1 lacks many of Gsa functional domains, and
its function is unknown, but itsmouse homolog is highly expressed in the brain.63

In most tissues, expression of Gsa is biallelic, although the paternal copy is
partially or completely silenced in renal cortex,64 thyroid, pituitary, and ovar-
ies.65–67 This biallelic expression likely accounts for the fact that maternally
inherited loss-of-function mutations are not lethal, as heterozygous expression
of Gsa is sufficient to maintain normal function in those tissues. For instance,
the fact that PHP does not affect the action of PTH on bone results from the
biallelic expression of Gsa in that tissue.68

Approximately 2.5 kb upstream from the Gsa promoter is a second promoter
that is responsible for production of the A/B transcript (homologous to the 1A
transcript inmice).69,70 The A/B transcript produces an alternate first exon, which
is spliced to exon 2, but this first exon does not contain an in-frame translation-
initiation codon, though transcription may start from within the shared exon 2,
leading to a truncated Gsa variant.69 Alternatively, the A/B transcript may be
noncoding and may function primarily in a regulatory role in cis.

The A/B promoter lies within a differentially methylated region (DMR).
The promoter is methylated and repressed on the maternally derived copy, and
is unmethylated and active on the paternally derived copy.69–72 Loss of methyl-
ation from the maternally inherited allele acts not only to activate transcription
of A/B from the allele but also to repress Gsa transcription in cis. Thus, the
expression of these two transcripts is reciprocally regulated, but the mechanism
of regulation is not understood.

The next promoter upstream fromGsa produces the extra-large Gsa variant
(Gsa-XL), which shares a long C-terminal sequence with Gsa, but differs in the
large N-terminal region encoded by the XL alternate first exon.2,3,71,72 Like



DISEASES ASSOCIATED WITH GENOMIC IMPRINTING 409
Gsa, Gsa-XL produces long and short variants through inclusion or exclusion of
exon 3, as well as a truncated version that incorporates the N1 exon.2,3 Like the
A/B promoter, the XL promoter lies within a DMR and is maternally silenced.
Unlike A/B, which exhibits a complex pattern of tissue-specific and partial
silencing, Gsa-XL is exclusively expressed from the paternal copy2,3,73,74 (but
see Ref. 75).

The XL promoter is also responsible for a small protein produced from a
second open-reading frame located entirely within the XL exon 1.76,77 The
protein, ALEX, has been shown to interact with Gsa-XL in vitro, but the
function of this gene product in vivo remains to be understood.

Furthest upstream is the NESP promoter. As with the other GNAS pro-
moters, the NESP exon 1 is spliced to the shared exons 2–13. However, the
entire protein-coding region for this transcript lies within the first exon so that
this protein shares no sequence with the Gsa variants.2,3,74 The gene product
(NESP55) is a neuroendocrine secretory protein expressed in neuroendocrine
tissues and the peripheral and central nervous systems.78 Nesp knockout mice
appear phenotypically normal, but suffer from certain behavioral abnormal-
ities.79 The NESP promoter lies within a paternally methylated DMR, and
expression of this transcript is exclusively from the maternally derived
copy.2,3,74

The GNAS locus is also host to a noncoding antisense RNA transcript
known as NESPAS (or GNASAS). The NESPAS promoter lies within the
XL DMR, and its transcript is produced only from the paternally derived
allele.73,80,81 Elimination of the promoter results in derepression of NESP and
demethylation of the NESP DMR, suggesting that transcription of NESPAS is
the primary mechanism by which maternal expression of NESP is enforced.82

Still further upstream is the STX16 locus, encoding syntaxin 16. This locus
is not imprinted, nor is it considered part of the GNAS complex locus. Howev-
er, it appears that STX16 may harbor a long-range cis-acting element that
participates in regulation of the GNAS transcripts. Microdeletions within
STX16 have been associated with dysregulation of the A/B and Gsa transcripts,
as these microdeletions cause PHP-Ib, but only when maternally inherited.83

As STX16 itself is not imprinted, this suggests that the cause is a cis-acting
regulatory interaction with nearby imprinted genes.
3. ESTABLISHMENT OF EPIGENETIC MARKS AT GNAS
The GNAS locus contains three distinct DMRs, and in each case, methyla-
tion covering the promoter region is associated with transcriptional repression.
The furthest downstream DMR covers the A/B promoter and is methylated on
the maternally derived allele.71,72,84 Methylation of this DMR is responsible
not only for the maternal silencing of the A/B transcript but also for the
preferential paternal expression of the Gsa transcript in certain tissues.85–87
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Further upstream is a second maternally methylated DMR that covers the
Gsa-XL and NESPAS promoters, driving paternal-specific expression of both
transcripts.88–90 Furthest upstream is a DMR covering theNESP promoter that
is paternally methylated, causing maternal expression of NESP.74,89,91

The methylation patterns at these three DMRs are not independent,
however. Methylation at the NESP DMR does not occur until after fertiliza-
tion71,72 and depends on transcription from the paternally inherited
NESPAS,82 as targeted deletion of NESPAS results in loss of methylation and
biallelic expression of NESP when paternally inherited. Interestingly, this
NESPAS deletion also leads to partial methylation of the paternal A/B promot-
er, which results in decreased A/B expression and increased Gsa expression.82

Thus, it appears that the NESPAS DMR is the element primarily responsible
for control of imprinted gene expression in this cluster.
4. DISEASES AT THE LOCUS
PHP-Ia results from maternal inheritance of loss-of-function mutations at
the Gsa locus, and the tissue-specific resistance patterns associated with PHP-
Ia are explained by the tissue-specific patterns of imprinting at the locus.44

Maternally inherited loss of function results in complete or nearly complete
loss of transcription in cell types where the paternal allele is completely or
partially silenced. In cell types with biallelic expression, the result is simply a
50% reduction in transcription, which does not appear to substantially affect
the PTH response in those cells.68

PHP-Ib is also inherited maternally, but is not due to inactivating mutations
in Gsa. Rather, this disease subtype is associated with broad epigenetic defects
at the GNAS locus. A diverse set of genetic lesions have been associated with
PHP-Ib, but in each case, the mutation causes loss of imprinting (derepression)
of the A/B transcript.71,72,85,86 In cell types, where Gsa and A/B are reciprocally
coregulated, the derepression of A/B reduces the expression of Gsa, resulting
in the PTH-resistant phenotype. However, the expression of these two tran-
scripts does not appear to be coupled in all cell types, as A/B expression exists in
some tissues in the absence of Gsa imprinting.85–87 Presumably, derepression
in these tissues does not diminish Gsa expression, and it is PTH resistance in
those tissues that are responsible for AHO, which is present in PHP-Ia, but
absent in PHP-Ib.

In the related disorder of pseudopseudohypoparathyroidism (PPHP), the
physical characteristics associated with AHO are present, but without the
resistance to PTH and other hormones.92 Like PHP-Ia, PPHP results from
Gsa-inactivating mutations, and, in fact, these two diseases can arise from the
same genetic defect, and both are often found in the same families.55,93

Whereas PHP-Ia results from maternal inheritance of these defects, PPHP is
paternally inherited.94,95 This pattern suggests that the hormone resistance
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associated with PHP is attributable to the loss of maternal expression of Gsa,
whereas the AHO component of the disease is the result of haploinsufficiency
of Gsa in tissues where it is normally biallelically expressed, but is independent
of parental origin.

Mutations causing constitutive Gsa activity are also associated with various
diseases, but are lethal if inherited, and are therefore typically of somatic
origin. Activating mutations have been described in various tumors, including
particularly endocrine adenomas.96 Activating Gsa mutations occurring early
in development (giving rise to mosaic constitutive activity) lead to McCune–
Albright syndrome, which involves abnormalities of the skin, bone, and endo-
crine organs.97,98 To the best of our knowledge, the possibility of systematic
phenotypic differences depending on the parental origin of the constitutively
active allele has not been examined.
B. Chromosomes 7 and 11: Silver–Russell and
Beckwith–Wiedemann Syndromes

1. SILVER–RUSSELL SYNDROME
Silver–Russell syndrome (SRS) is a growth disorder defined by intrauterine
growth restriction (IUGR) in combination with a subset of other abnormalities
that can include hypoglycemia, feeding problems, lack of subcutaneous fat, and
early onset of puberty, among others. Individuals with SRS are typically small
for gestational age, often weighing less than 3 kg at birth, and the average
height for adults with SRS is less than 5 ft.99–101

SRS does not have a single genetic basis, and genetic associations have
been reported for chromosomes 1, 7, 8, 11, 15, 17, 18, and X.102 For most of
these chromosomal associations, SRS has been observed in a small number of
patients exhibiting either trisomy or a large-scale deletion or translocation, and
the mechanism through which these defects lead to SRS remains poorly
understood. The genetic (and epigenetic) defects on chromosomes 7 and 11
are most commonly associated with SRS, and have been most studied. Both of
these chromosomes are host to clusters of imprinted genes that appear to play a
role in the etiology of the disease, and it is these defects that are the focus of
this section.
2. CHROMOSOME 7
Approximately 5–10% of SRS cases are associated with maternal UPD at
chromosome 7 (MatUPD7), where the individual is karyotypically normal, but
both copies of chromosome 7 have been inherited from the mother, and
therefore exhibit the maternal-specific epigenetic modifications.102,103 Three
regions of chromosome 7 contain clusters of imprinted genes, and any combi-
nation of these might contribute SRS. The three regions, 7p11.2–13, 7q21, and
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7q32, all contain imprinted genes that are expected to contribute to
growth restriction when maternally duplicated. In addition, there is some
evidence from smaller genetic lesions that provides some insight as to
how these different regions might contribute to other aspects of the SRS
phenotype.

The 7p11.2–13 region includes the GRB10 (growth factor receptor bound
protein 10) locus, which may produce as many as 13 transcripts, most of which
are thought to be noncoding, and which include maternal, paternal, and
biallelic expression in different tissues.7,104–106 In particular, the maternally
expressed g1 transcript has been identified in placental tissues, while other
splice variants are paternally expressed in the brain.7 The genes neighboring
GRB10 are thought to be unimprinted in humans,107 and GRB10 has been
shown to reduce the size and efficiency of the placenta.108

These patterns suggest that the contribution of this chromosomal region to
the growth-restriction aspects of the SRS phenotype in the MatUPD7 cases is
likely mediated through increased expression of the g1 form in placental
tissues. Loss of paternal expression of other forms in the brain may additionally
contribute to the cognitive aspects of SRS. However, identification of a family
in which maternal inheritance of a segmental duplication covering this region is
associated with mental retardation109 suggests that this loss of paternal expres-
sion may not be the only way in which this locus affects cognition in SRS
patients, as these individuals possess a normal paternally inherited chromo-
some 7.

Four imprinted genes have been identified in the 7q21 region: the mater-
nally expressed tissue factor pathway inhibitor 2 (TFPI2) locus and the pater-
nally expressed epsilon-sarcoglycan (SGCE) and PEG10 loci.110–112 The
CALCR locus appears to be monoallelically expressed in the brain, but which
allele is silenced has not yet been definitively established,110 though the mouse
homolog Calcr is maternally expressed in brain.113 Other transcripts in the
region are imprinted in the mouse, but are either unimprinted or have uncer-
tain imprinting status in humans.

PEG10 is a retrotransposon-derived gene that plays an important role in
placental development,114 and loss of PEG10 expression is a likely contributor
to growth restriction in SRS. TFPI2 is a putative tumor suppressor,115 suggest-
ing that it may interfere with cell proliferation. It is maternally expressed in
extraembryonic tissues, and thus increased expression in MatUPD7 may
also contribute to growth restriction. Mutations in SGCE are a major
cause of myoclonus-dystonia syndrome (MDS).116 MDS is a movement disor-
der characterized by rapid muscle contractions and with twisting and repetitive
movements producing abnormal postures. SRS patients often present with
low muscle tone, but the connection between these phenotypes is not
transparent.
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The 7q32 chromosomal region contains the paternally expressed MEST,
MEST1T1 (antisense to MEST), and COPG21T1 (an intronic transcript found
within the biallelically expressed COPG2 gene) loci, as well as two maternally
expressed loci, CPA4 and KLF14.117 Knocking out the mouse ortholog of
MEST (Peg1/Mest) results in IUGR, as well as a suite of behavioral abnormal-
ities relating to maternal care for offspring, such as pup retrieval, nest building,
and placentophagia.37,38,40,41,118 The absence of a functional MEST therefore
seems a likely contributor to the undergrowth phenotype (but see Ref. 119).
KLF14 specifies a transcription factor, and has been undergoing accelerated
evolution in the human lineage.120 These features make it an interesting
candidate, but do not suggest any specific mechanism through which over-
expression in MatUPD7 might contribute to SRS.

Located nearby in the 7q31.2 region is the FOXP2 locus, mutations of
which are associated with developmental verbal dyspraxia (DVD).121–123 One
study has suggested that this disorder may result specifically from the absence
of a functional paternally inherited copy of the gene.124 If FOXP2 is, in fact,
subject to parent-of-origin effects, the loss of a paternally inherited copy in
MatUPD7 may contribute to the speech effects associated with SRS patients,
many of whom exhibit DVD.
3. CHROMOSOME 11
Chromosome 11 contains two clusters of imprinted genes (see Fig. 2), both
located in the 11p15.5 region, but regulated by separate imprinting control
regions (ICRs). The more telomeric of the two ICRs, ICR1, controls expression
of the reciprocally imprinted IGF2 (insulin-like growth factor type 2) and H19
loci. Normally, IGF2 is paternally expressed,125,126 while H19 is maternally
mat IGF2 H19KCNQ1KNCQ1OT1CDKN1C

pat IGF2 H19KCNQ1KNCQ1OT1CDKN1C
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FIG. 2. Structure of the 11p15.5 imprinted gene clusters. This figure illustrates the methylation
and expression patterns on the maternally (top) and paternally (bottom) inherited alleles. Arrows
indicate expression, and filled circles indicate the ICR1 and ICR2 differentially methylated regions.
Distances not to scale.
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expressed.127 This pattern is controlled by epigenetic differences between the
two alleles at the H19 DMR.128–130 When unmethylated (as on the maternally
inherited copy), the H19 DMR binds to CTCF, which serves as an insulator,
isolating IGF2 from a downstream enhancer element, which interacts instead
with the H19 promoter region. Methylation of the paternally inherited copy
blocks CTCF binding, thereby eliminating the insulator activity and allowing
the enhancer to interact instead with the IGF2 promoter.

IGF2 is a major contributor to growth in early development, and approxi-
mately 50–60% of SRS patients exhibit epigenetic defects in the 11p15.5
region.102,131 Particularly common is hypomethylation at ICR1, which results
in the epigenetic silencing of IGF2 from both alleles.103,132 Further, the degree
of hypomethylation correlates with the clinical severity of the SRS pheno-
type.133 Thus, it appears that loss of IGF2 expression is sufficient to generate
all key aspects of the SRS phenotype, particularly those directly related
to growth.

ICR2 controls a cluster of imprinted transcripts, most of which are mater-
nally expressed and are associated with negative growth effects. Normally,
maternal methylation of the KvDMR silences maternal expression of the
KCNQ1OT1 noncoding RNA transcript. Expression of KCNQ1OT1 from the
paternally inherited copy acts in cis to suppress expression of a number of
nearby genes, including SLC22A18, PHLDA2, CDKN1C, and KCNQ1.134–136

Note that the imprinted region in mouse extends further, including theOsbpl5,
Tssc4, and Nap1l4 loci, which are biallelically expressed in humans.137 At the
moment, the potential contributions of genes in this region to the SRS pheno-
type remain unclear.

A prospective study identified a number of clinical features for which SRS
patients with MatUPD7 and hypomethylation at ICR1 differ statistically, either
in the likelihood of displaying that aspect of the disease phenotype, or in the
clinical severity.138 MatUPD7 patients were more likely to display develop-
mental delays, to require speech therapy, and to exhibit certain craniofacial
features, such as a triangular face and low-set ears. Patients with hypomethyla-
tion at ICR1 were more likely to exhibit developmental asymmetries and
cognitive defects.

The remaining 30–40% of SRS cases have not been definitively associated
with specific genetic or epigenetic defects, and it is possible that many of
those cases are related to loci (imprinted or not) on chromosomes other than
7 and 11. This apparent causal heterogeneity, along with the subtle phenotypic
differences among patients with different underlying causes, suggests that the
bulk of the clinical features associated with SRS may be relatively generic
consequences of undergrowth, particularly during prenatal development. It is
also possible that in the future, SRS may be differentiated into subtypes based
on genetic and epigenetic etiology.
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4. BECKWITH–WIEDEMANN SYNDROME
Beckwith–Wiedemann syndrome (BWS) is associated with overgrowth and
is in many ways genetically and phenotypically reciprocal to SRS 139. BWS is
associated with macroglossia (enlargement of the tongue), large prenatal and
childhood body mass (> 90th percentile), and defects in the abdominal wall.
BWS also results in extreme placental overgrowth, with placentas that are
approximately 2� normal weight.140–142

Like SRS, BWS is associated with a heterogeneous genetic etiology but is
most often associated with epigenetic defects covering the 11p15.5 imprinted
region, which account for 60–70% of cases.143–147 Over half of BWS patients
exhibit hypomethylation at ICR2, resulting in loss of expression of SLC22A18,
PHLDA2, CDKN1C, and KCNQ1 from the maternally inherited copy. In
approximately 5% of cases, patients show hypermethylation at ICR1, which
results in aberrant expression of IGF2 from the normally silenced maternally
inherited copy. Another � 15% of cases are accounted for by paternal UPD
covering 11p15.5, eliminating maternal expression (and increasing paternal
expression) from all imprinted genes in the region. A small fraction (5–10%) of
cases are associated with mutations in CDKN1C (previously p57(KIP2)), which
specifies a cyclin-dependent kinase, a tumor suppressor that exerts its negative
effects on cell proliferation by inhibiting progression through the cell cycle.148

The overall pattern observed in BWS is qualitatively analogous to what is
seen in SRS. The syndrome can result from a heterogeneous collection of
underlying genetic and epigenetic defects, but most cases are associated with
dysregulation of one or both of two loci with broad effects on cell proliferation
and growth: IGF2 and CDKN1C. This pattern suggests that many of the
features associated with BWS are generic consequences of an overgrowth
phenotype. At the same time, certain patterns have emerged that point toward
subtle clinical distinctions associated with different molecular etiologies. For
example, certain features of BWS may be overrepresented in patients with
CDKN1C mutations, including polydactyly, extra nipple, and cleft palate.148

Eventually, patterns like this may make it possible to disentangle the contribu-
tions of various loci in the 11p15.5 region to this syndrome.

Given the reciprocal phenotypes associated with SRS and BWS, and the
reciprocal epigenetic defects in the 11p15.5 imprinted region that are asso-
ciated with the two syndromes, it seems reasonable to expect that BWS might
also be associated with PatUPD7. In mice, PatUPD of chromosome 11, which
is syntenic with human chromosome 7, results in offspring that are 30% larger
than their littermates.149 However, in humans, the consequences of paternal
isodisomy in this region are unclear. In four reported cases of PatUPD7, three
show normal growth,150–152 and one shows overgrowth.153 Two of these
patients (one of which showed overgrowth) were screened due to the fact
that they had cystic fibrosis.
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C. Chromosome 14: UPD14

UPDs of chromosome 14, first described in 1991,154,155 are thought to

represent a relatively rare disorder. However, the frequency is not well esti-
mated, particularly for the maternal UPD (MatUPD14), due to the facts that it
has a relatively nonspecific phenotype and molecular testing is not routine.
MatUPD14 syndrome is associated with growth retardation, hypotonia (muscle
weakness), joint laxity, early onset of puberty, and mild dysmorphism of the
hands, feet, and face.156

Paternal UPD14 (PatUPD14) syndrome is substantially less common, and
is associated with a much more extreme phenotype, including polyhydromnios,
premature labor, skeletal abnormalities, respiratory and neurodevelopmental
problems, and often early death.156

Both UPD14 syndromes are thought to be associated with altered gene
expression in the 14q32 region, which contains a cluster of imprinted genes,
including the paternally expressed DLK1, RTL1 (PEG11), and DIO3 along
with the maternally expressed GTL2 (MEG3), RTL1as, MEG8, and BEGAIN
(see Fig. 3). Imprinting in these regions is controlled by two different DMRs:
the DLK1-GTL2 intergenic DMR (IG-DMR) and the GTL2-DMR.157,158 The
two DMRs appear to function hierarchically and in a tissue-specific
fashion.159,160

The centrality of this region is supported by patients displaying the
MatUPD14 clinical phenotype in the absence of a chromosomal UPD. Loss
of methylation at the paternal IG-DMR produces the MatUPD14 pheno-
type.161,162 Similarly, the PatUPD14 phenotype has been observed in a patient
with a segmental paternal UPD spanning the 14q32–14q32.33 region.163 In
each case, however, the observed defects are associated with aberrant expres-
sion of the entire cluster of imprinted genes, and the relative contributions of
individual genes to the disease phenotypes are not understood.
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FIG. 3. Structure of the 14q32 imprinted gene cluster. This figure illustrates the methylation
and expression patterns on the maternally (top) and paternally (bottom) inherited alleles. Arrows
indicate expression, and filled circles indicate the intergenic and GTL2 differentially methylated
regions. Distances not to scale.
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D. Chromosome 15: Prader–Willi and Angelman
Syndromes

Prader–Willi syndrome (PWS) and Angelman syndrome (AS) were the first

known examples of human diseases involving imprinted genes. They occur with
a frequency of 1:15,000 and 1:25,000 live births, respectively, and are caused by
alterations in region 15q11–13 of chromosome 15. This chromosomal region
contains a cluster of imprinted genes that are expressed from the paternally
inherited or the maternally inherited chromosome only (see Fig. 4). The
parent-of-origin expression of genes in this cluster is regulated by an ICR.

The paternally expressed genes in region 15q11–13 areMKRN3,MAGEL2,
NDN, C15orf2, SNURF-SNRPN, and a group of snoRNA genes. Expression of
paternally inherited genesMKRN3, NDN, and SNURF-SNRPN is regulated by
differential methylation of the promoter regions of each gene. C15orf2 is
paternally expressed in the fetal brain but biallelically expressed in other
organs. The relative contribution of each of these genes to the PWS clinical
phenotype is yet to be determined.

The maternally expressed genes in region 15q11–13 are UBE3A and
ATP10C. Expression of maternally inherited genes UBE3A and ATP10C is
not achieved through differential methylation of the promoter regions of
each gene. Silencing of the paternally inherited copy of UBE3A is achieved
through differential expression of the 30 end of the SNURF-SNRPN transcript
acting as an antisense transcript.164 The imprinted expression of gene UBE3A
MAGEL2 NDN SNRPN UBE3A ATP10C
TUBGCP5
NIPA1
NIPA2
CYFIP1
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FIG. 4. Structure of the AS-PWS imprinted region. This figure illustrates the methylation and
expression patterns on the maternally (top) and paternally (bottom) inherited alleles. Horizontal
arrows indicate expression, and filled circles indicate the differentially methylated region. Distances
not to scale. Vertical arrows indicate the relative locations of the three breakpoints described in the
text. The genes lying between breakpoints one and two (at the far left side of the figure) are all
unimprinted.
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is tissue specific and restricted to some types of cells in the brain. UBE3A is the
critical gene leading to the AS clinical phenotype. ATP10C is maternally
expressed in the brain but biallelically expressed in other organs.165 The
orthologous gene in mouse (Atp10a) is not imprinted.166

The ICR regulates in cis imprint resetting and maintenance in the whole
cluster of imprinted genes.167 It consists of two critical elements the PWS-SRO
and the AS-SRO.168 PWS-SRO controls the maintenance of the paternal
imprint during early embryonic development. AS-SRO controls the establish-
ment of the maternal imprint in the female germ line.

PWS and AS result from complete or partial deletion of chromosomal
region 15q11–13, UPD (inheritance of the two copies of a chromosomes
from the same father) of chromosome 15. These are imprinting defects that
may or may not be caused by deletions in the imprinting center of chromosom-
al region 15q11–13.

Seventy percent of all PWS cases are due to the paternal inheritance of a de
novo interstitial deletion of a region of chromosome 15. This region includes
the cluster of imprinted genes and several nonimprinted genes. Deletions
are caused by nonhomologous recombination events and can be of two
kinds: class I deletions affect the region comprised between break point 1
(BP1) and break point 3 (BP3), and class II deletions affect the region com-
prised between break point 2 (BP2) and BP3. Paternally inherited deletions
result in the lack of expression of imprinted genes that are active when
paternally inherited.

Between 25% and 30% of all PWS cases are due to maternal UPD. These
UPDs are caused by maternal meiotic nondisjunction followed by mitotic loss
of paternal chromosome 15 after fertilization. Maternal UPDs result in the lack
of expression of imprinted genes that are active when paternally inherited and
up to a twofold increment in expression of genes that are active when mater-
nally inherited.

At most 3% of all PWS cases are due to imprinting defects that result in the
paternal chromosome carrying a maternal imprint. Imprinting defects caused
by deletions affecting the ICR are very rare, while imprinting defects caused by
epimutations affecting the IR are more common. Epimutations can occur
during imprint erasure in primordial germ cells, or during imprint establish-
ment or maintenance after fertilization. If the epimutation occurs after fertili-
zation, it may result in mosaicism. In PWS patients, the paternal chromosome
that carries an incorrect maternal imprint is always derived from the paternal
grandmother,169 which suggests that the incorrect imprint in the PWS patients
results from failure of the paternal germ line to erase the grandmaternal
imprint. Supporting this observation, mosaicism in PWS patients due to an
imprinting defect are very rare. Imprinting defects result in gene silencing of
paternally expressed genes.
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Seventy percent of all AS cases are due to the maternal inheritance of the
same deletions described for PWS affecting the cluster of imprinted genes in
region 15q11–13.

Ten percent of all AS cases are due to mutations in gene UBE3A.170

Another 2–5% of AS cases are due to paternal UPD covering the 15q11–13
region. These UPDs are caused by maternal nondisjunction with postzygotic
duplication of chromosome 15 inherited via sperm.

Between 2% and 4% of all AS cases are due to imprinting defects that result
in the maternal chromosome carrying a paternal imprint. Imprinting defects
caused by deletions affecting the ICR are very rare while imprinting defects
caused by epimutations affecting the ICR are more common. In AS patients, the
maternal chromosome carrying an incorrect paternal imprint is inherited either
from the maternal grandfather or from the maternal grandmother.169,171 This
finding suggests that the imprinting defect occurs after erasure of the parental
imprints and results from an error in imprint establishment or imprint mainte-
nance. Corroborating this observation, more than 40% of AS patients with an
imprinting defect are found to have somatic mosaicism. The remaining approxi-
mately 15% of AS cases are caused by genetic defects of unknown nature.

Patients suffering from PWS present a clinical phenotype that affects
feeding, weight, and growth among others. The clinical phenotype
corresponding to these features is markedly biphasic with either weaning or
menarche (which is still debated) separating both phases.172 Early infants
present low birth weight, severe hypotonia, and feeding difficulties. Late
infants show hyperphagia (insatiable and/or nondiscriminatory appetite)
and obesity. Accompanying features are short stature, small hands and feet,
almond-shaped eyes, triangular mouth, and hypogonadism in both sexes.

AS patients show distinctive behavior with temper tantrums, obsessive-
compulsive behavior, and sometimes psychiatric disturbance. Mild to moderate
mental retardation is also observed. Patients with class I deletion have generally
more behavioral and psychological problems than individuals with class II
deletion.173

Patients suffering from AS also present clinical phenotype that affects
feeding, and growth among others. They present prolonged sucking although
poorly coordinated and microcephaly. In contrast with PWS, the clinical pheno-
type of AS patients is not biphasic. The behavior of AS patients is also affected
showing sleep disorders, happy demeanor, that includes inappropriate laughter
and excitability, and limited speech. Severe mental retardation is also observed.
E. X Chromosome: Turner and Klinefelter Syndromes

Turner syndrome (TS) results from the absence of all or part of one of the X

chromosomes in females (45, XO females, with ‘‘45’’ referring to the total
number of nuclear chromosomes, as opposed to the normal, 46-chromosome
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karyotype). Individuals with TS typically display short stature with broad
chests, low-set ears, and webbed necks and are often subject to cardiovascular
and renal defects.174,175 Klinefelter syndrome (KS) is a condition in males in
which they inherit two X chromosomes in addition to a Y chromosome (47, XXY
males). Individuals with KS often have small testicles and reduced fertility, but
the phenotypic manifestations are highly variable, with many individuals having
few detectable symptoms.176

Neither TS nor KS is an imprinting disorder per se, but both are potentially
subject to influence by imprinted genes. A cluster of imprinted genes has been
identified on the mouse X chromosome, and at least one of those genes is
associated with effects on cognition and behavior.177,178 This raises the possi-
bility of phenotypically relevant imprinted X-linked genes in humans.

In TS, individuals inherit a single X chromosome. Normally in mammals,
males have one X chromosome, while females have two. The Y chromosome
contains many fewer genes than the X, and dosage compensation is achieved
through epigenetic silencing of one of the two X chromosomes in females.179 In
some contexts, X inactivation itself is imprinted, with the paternally inherited X
undergoing inactivation in marsupials and in the extraembryonic tissues of
some eutherians, including mice.180

However, not all of the genes on the X chromosome are silenced, as
approximately 15–20% escape inactivation,181,182 and many of the features
associated with TS are likely due to haploinsufficiency at those loci. For
example, the SHOX locus, located in the pseudoautosomal region, is thought
to be the most significant contributor to the stature effects in TS.183

The single X chromosome inherited by someone with TS will be either
maternally or paternally inherited (XmO or XpO, respectively), and a number of
studies have looked for phenotypic differences between these two subsets of
TS patients. Some studies have failed to find any significant imprinting effects
on the physical manifestations of TS, including stature, body mass index,
cardiac, renal, skeletal, lymphatic, aural, or ocular systems,184,185 though one
study has found that XmO patients were more likely to have kidney malforma-
tions, had lower LDL cholesterol, and were less likely to have ocular abnorm-
alities,186 and there is some evidence for imprinting effects on the response to
treatment with growth hormone.187

While the effect of X-linked imprinted genes on the physical features inTS are
at present unclear, there is strong evidence pointing toward cognitive differences
between XmO and XpO females. The first study to focus on these differences
found evidence that XpO females had better verbal skills, less social-cognitive
impairment, and better behavioral inhibition and planning skills.188

More recent brain-imaging studies have identified systematic differences in
brain structure that suggest a role for X-linked imprinted genes in neurodeve-
lopment. XpO females were found to have a larger volume of gray matter in the
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caudate nuclei, and a larger volume of white matter bilaterally in the temporal
lobes.189 Another study has found that XmO females have increased gray matter
in the left superior temporal gyrus.190 Other studies have failed to find signifi-
cant imprinting effects on brain structure in TS patients.191–193

Findings suggestive of functional differences have also been identified in
subsequent studies, although the magnitude of the effects is often quite small.
XmO females appear to exhibit enhanced forgetting in verbal contexts, while
forgetting is more pronounced for XpO females in spatial contexts.194 Other
studies have suggested that XmO females suffer greater impairment in verbal
cognition195 and arithmetic function.196 The consequences of TS for brain
structure and function, and the evidence for and against a significant effect of
imprinted genes, have been the subject of two recent reviews.197,198

Similarly, in KS, the supernumerary X chromosome can be either mater-
nally or paternally inherited, such that there are two distinct groups of KS
individuals: XmXmY males and XmXpY males. Studies on imprinting effects in
KS have been more limited, but one study has found that XmXpY males had
increased body size parameters for some measurements, consistent with a
growth-enhancing effect of one or more imprinted genes on the X chromo-
some.199 This study also found that XmXpY males were significantly more likely
to have impaired speech and motor developmental problems. A second study
reported an association between inheritance of a paternally derived X chromo-
some and later onset of puberty.200
F. Chromosome 6: Transient Neonatal Diabetes

The 6q24 region is associated with transient neonatal diabetes mellitus type

1 (TNDM1),201 and contains two imprinted genes where a subset of transcripts
is maternally silenced in at least some tissues,202 PLAGL1 (a.k.a. ZAC1 or
LOT1), a zinc-finger containing transcription factor involved in apoptosis and
cell-cycle control,203 and HYMAI, which produces a noncoding RNA. Over-
expression from these loci due to genetic or epigenetic abnormalities in the
6q24 region account for approximately 70% of cases of TNDM1,204 often
accompanied by macroglossia. Sources of overexpression include PatUPD6,
duplication of the paternal 6q24 region, and loss of methylation at the mater-
nally inherited TND DMR.204,205

The phenotype associated with paternalization of the 6q24 region is
puzzling in two respects, both relating to the fact that the known imprinted
genes in the region are maternally silenced. First, there are no reported
phenotypic effects associated with maternalization of the locus (through, e.g.,
MatUPD6), despite the fact that this would result in a complete loss of function
in cell types where these genes are maternally silenced. Second, based on
theoretical analysis and the patterns observed with other imprinted loci, we
expect maternal silencing to arise at loci with growth-enhancing effects.
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Contrary to this expectation, PLAGL1 appears to be a tumor suppressor,206 and
paternalization of the locus results in IUGR in > 95% of TNDM1 cases,207

rather than overgrowth.
III. Psychiatric Disorders and Other Behavioral Effects

Most of the disorders described in the previous section are characterized
primarily by their effects on growth and metabolism, and in some cases effects
on behaviors that relate directly to resource acquisition. The phenotypic effects
associated with disruption or duplication of particular imprinted genes in these
contexts are consistent with predictions from simple evolutionary models (with
a few exceptions). However, many imprinted genes are also expressed in the
adult brain and affect cognitive and behavioral traits in ways that are not as
easily understood.

Nevertheless, it appears that there are certain systematic patterns in the
phenotypic effects of imprinted gene expression in the brain, suggesting that
the function of these genes has been shaped, in part, by intragenomic conflict.
Further, many imprinted genes appear to contribute substantially to a number
of common psychiatric disorders. Evidence for this contribution comes primar-
ily from two sources: (1) psychiatric problems that are associated with known
imprinting-related disorders and (2) genetic studies that have identified statis-
tical associations of particular disorders with known imprinted genes, or have
found parent-of-origin effects associated with particular genetic markers.

We begin this section with a brief summary of what is known regarding the
roles of maternally and paternally expressed imprinted genes in the brain, and
what these patterns suggest regarding the evolutionary pressures acting on
these genes. We next discuss, the evidence for the contribution of imprinted
genes to the etiologies of schizophrenia and autism, and describe the opposi-
tional model of these disorders that is suggested by this evidence. Finally, we
briefly survey the evidence for imprinted gene effects in other psychiatric
disorders.
A. Imprinting Effects on Brain Structure and Function

In previous sections, we have already encountered evidence, in the context

of specific disorders, that imprinted genes play an important role in brain
development and may have systematic effects on behavior and cognition. The
behavioral phenotypes associated with AS and PWS have been interpreted in
terms of intragenomic conflict over the distribution of parental resources,39,208

where paternally inherited alleles favor greater resource acquisition prior to
weaning, when the resource demand falls primarily on the mother, but
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maternally inherited alleles increasingly favor greater demand as the paternal
resource contribution grows.39 An alternative explanation has been made in
terms of intragenomic conflict over egoistic and altruistic behaviors,40–42 where
paternally inherited alleles favor greater egoistic behavior in interactions with
nuclear family members, but maternally inherited alleles favor greater egoistic
behavior in social interactions.40–42

The patterns observed in some of the studies on TS are suggestive of an
intragenomic conflict over the allocation of neural resources to different cogni-
tive tasks, although the effects are small and have not been observed consis-
tently. The patterns that have been observed are consistent with imprinted
genes on the paternally inherited X favoring greater investment in verbal and
social cognition, while those on the maternally inherited X favor greater
investment in spatial cognition.188,194,195

Evidence for intragenomic conflicts over brain structure has also been
derived from parthenogenetic (PG) and androgenetic (AG) chimeras in mice.
These chimeras consist of a mixture of normal, biparental cells, and cells that
contain either two maternally derived (PG) or two paternally derived (AG) sets
of chromosomes.209 The PG chimeras had an increased brain volume relative
to body size, while the AG chimeras had a reduced brain to body size ratio.
Further, cortical areas were particularly enlarged (relative to other brain
structures) in PG chimeras, and the PG cells were particularly enriched in
those areas. Conversely, AG chimeras showed relative enlargement of limbic
structures, and enrichment of AG cells in those areas, including hypothalamic,
septal, and preoptic structures.

The patterns of brain structure and cell deposition in the chimera experi-
ment is suggestive of a conflict in which maternally derived alleles favor greater
investment in cortical functions, while paternally inherited alleles favor rela-
tively more investment in limbic functions, although it is worth noting that this
interpretation is not necessarily consistent with the apparent patterns sug-
gested by the TS comparisons. The recent genome-wide study of imprinted
gene expression in the mouse brain found approximately 1300 imprinted
transcripts, and found dynamic changes in the patterns of imprinted gene
expression through development.28,29 For example, the majority of imprinted
genes identified are maternally expressed early in development, while in the
adult brain, the majority are paternally expressed.

One study on the inheritance of human cognitive abilities found a potential
imprinting effect in normal cognition. The cognitive abilities of children were
found to be highly correlated with their mothers’ abilities for tasks associated
with the frontal, parietal, and temporal lobes, while the effects of both parents
were equally important for tasks associated with the occipital lobe.210 This
pattern is consistent with the distributions of PG and AG cells in the mouse
chimeras.
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Other behavioral effects associated with imprinted genes have been de-
scribed in mice. Deletion of the paternally expressed Peg1/Mest and Peg3 loci
in adult females are each associated with deficits in specific maternal beha-
viors.118,211 Deletion of the maternally expressed Ube3a produces defects in
context-dependent memory.212 Deletion of the maternally expressed Rasgrf1
causes defects in memory consolidation,213 and may contribute to depres-
sion.214 Deletion of the paternally expressed Ndn actually results in enhanced
spatial learning,215 while deletion of the maternally expressed Nesp produces
abnormal reactivity to novel environments.79

What is clear at this point is that imprinted genes play a significant role in
brain development and function, but that the influence of those genes is
complex. Several of the empirical observations are suggestive of systematic
patterns in the phenotypic effects of maternally and paternally expressed
imprinted genes, but those patterns are often based on small effects observed
for small numbers of loci. First steps have been taken to construct an overarch-
ing theoretical framework for understanding imprinted gene effects in the
brain that would be analogous to the framework existing for growth effects.40,41

Significantly more research—both empirical and theoretical—is needed in
this area.
B. Imprinted Gene Contributions to Schizophrenia
and Autism

There has been a recent concerted effort to understand the role of imprinted

genes in behavior and cognition, specifically in the context of schizophrenia and
autism. A number of comprehensive reviews have collected the evidence for a
role of imprinted genes in the etiology of both disorders.216–219 In fact,
imprinted genes account for some of the most significant associations of these
diseases with particular loci or chromosomal regions. For example, a recent
meta-analysis of GWAS analyses of schizophrenia found only one locus that
showed statistically significant association at the genome-wide level.220 This
locus includes the imprinted gene LRRTM1, which is maternally silenced, and
shows high expression during development throughout the cortical plate, as well
as the septum caudate, putamen, dorsolateral thalamus, and lateral geniculate
body.221 Interestingly, LRRTM1 is also associated with handedness,222 suggest-
ing that its effect on susceptibility to schizophrenia may be mediated through its
effects on brain lateralization.

Many of these imprinted gene effects follow systematic patterns in which
schizophrenia and autism correlate with imbalances in maternal and paternal
genetic contributions to the individual. Schizophrenia is associated with excess
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maternal contribution (e.g., loss of function of a paternally expressed gene, or
duplication of a maternally expressed gene), while autism is associated with an
excess of paternal expression.217

This pattern suggests a model of cognitive/behavioral phenotypes in which
schizophrenia and autism can productively be thought of as oppositional dis-
orders. That is, it appears that they represent opposite extreme values along
some phenotypic axis, and that there may be an intragenomic conflict between
maternally and paternally derived genes with respect to the optimal cognitive/
behavioral phenotype along that axis. While both optima are presumably well
within the normal range (far from the extreme phenotype values associated
with either of these two disorders), they differ such that the patrilineal opti-
mum is slightly closer to the autism end of the spectrum, while the matrilineal
optimum is slightly closer to the schizophrenia end.

Evolutionary theory predicts that psychotic-spectrum disorders will be
linked to a clinical phenotype called the ‘‘hyper-egoistic brain,’’ while autistic-
spectrum disorders will be linked to the ‘‘hyper-altruistic brain’’ clinical
phenotype.40,41 The behavioral phenotypes associated with hyper-altruistic or
hyper-egoistic brains need not (and generally will not) be functionally altruistic
or egoistic, respectively. These disorders represent major disruptions at the
level of the promiate mechanisms underlying social behavior and are not well-
honed adaptations operating for the good of either the maternal or paternal
gene copy.

TS is associated with elevated rates of autism, but, curiously, autism appears
to be more common in XmO patients than in XpO patients,223,224 contrary to
what might be expected based on extrapolation from the patterns observed with
imprinted autosomal loci. One possibility is that imprinted genes on the X
chromosome are under strong selection based on sex differences (since only
females normally inherit a paternally derived X), and that this is confounding the
other selective pressures on these loci. Recall that the apparent imprinting
effects on certain aspects of cognition in TS also appear to be at odds with the
general patterns of influence of imprinted genes. Unraveling the effects of
imprinting and sex differences for X-linked and autosomal loci will require
additional research.
C. Imprinted Gene Effects in Other
Psychiatric Disorders

More limited evidence points toward a contribution of imprinted genes to

the etiology of other specific psychopathologies,225 although in each case, the
potential molecular and genetic mechanisms have yet to be fully elucidated,
and attempts to understand the evolutionary origins are purely speculative at
this point.
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1. OBSESSIVE-COMPULSIVE DISORDER
Obsessive-compulsive disorder (OCD) is associated not only with obsessive
and compulsive behaviors, but also with temper issues, externalizing behavior,
and emotional problems.226 OCD is extremely common, estimated to affect as
many as 5 million people in the United States,227 and shows a strong genetic
component.228 OCD is comorbid with Prader–Willi syndrome and occurs in
PWS-like patients.229 One hypothesis is that the absence of imprinted small
nucleolar RNAs (SnoRNAs) that normally interact with Serotonin 2C receptor
subtypes may contribute to the etiology of OCD.230
2. ATTENTION-DEFICIT HYPERACTIVITY DISORDER
Attention deficit hyperactivity disorder (ADHD)231 is also extremely com-
mon and highly heritable and occurs at high frequency in conjunction with
PWS.232 Imprinting effects on hyperactivity have been reported in mice,149 and
parent-of-origin effects have been reported in disorders that are comorbid with
ADHD, such as Tourette’s syndrome,233 and a specific polymorphism in the
gene encoding brain-derived neurotrophic factor (BDNF) has been specifically
associated with susceptibility to ADHD.234
3. BIPOLAR AFFECTIVE DISORDER
Bipolar affective disorder (BPAD) and other mood disorders are highly
comorbid with ADHD,235–237 and cyclical depression has been reported in
conjunction with PWS.238,239 The severity of symptoms in BPAD in conjunc-
tion with ADHD shows dependence on parent of origin,240 and several genes
that affect the dopaminergic and serotinergic systems that are common targets
of therapeutic intervention show evidence for imprinting effects, including
dopa decarboxylase (DDC),241 tryptophan hydroxylase 2 (TPH2),242 and
BDNF.243,244
IV. The Cost of Imprinting

In some ways, diseases associated with imprinted genes are no different
from other diseases with a genetic basis. Mutations or epimutations occur in
the germ line or the soma and produce the disease phenotype. One obvious
difference is that, since imprinted genes are typically expressed from only one
of the two alleles, only one loss-of-function mutation is required to effectively
knock out the gene. Thus, at least for genes where loss-of-function mutations
would normally be recessive, the monoallelic expression associated with
imprinted genes adds a degree of penetrance to mutations. Further, imprinted
genes are subject to certain mutations or epimutations that result in
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transcriptional reactivation of the normally silenced allele, often referred to as
‘‘loss-of-imprinting’’ mutations. This reactivation results in an increase in the
overall expression level, and is associated with a number of diseases.245–247

Thus, there is a certain cost, in elevated penetrance of mutations and
epimutations associated with imprinted genes, that is really associated with
their monoallelic expression. However, there is a more subtle, but potentially
much more significant, cost associated with genomic imprinting, that derives
from how the imprinted genes alter the evolutionary dynamics of the systems in
which they appear.

In general, the effect of natural selection is not identical for maternally and
paternally inherited alleles. The magnitude of the selection asymmetry may be
greatest in the context of fetal growth effects, decreasing significantly for
postnatal behavioral effects, and may be quite subtle for many cognitive and
behavioral phenotypes in adults. However, at loci where imprinted gene
expression has been established, even subtle selective effects can have signifi-
cant consequences over sufficiently long time scales.

In particular, consider a pair of oppositely imprinted loci (one maternally
expressed and one paternally expressed), where the phenotypic effect of in-
creasing gene expression at one locus is opposed to the effect of increasing
expression from the other locus. If the matrilineal and patrilineal optima differ
even slightly for this phenotype, these two loci will become engaged in an
evolutionary arms race, with each under selection to increase its level of
expression from the active allele.

In the simplest possible model, this escalation will go on forever, so that
each locus is producing an infinite amount of gene product. Clearly, this is not
realistic, and at some point, some other effect will limit the escalation. Among
the possibilities for this limiting effect are metabolic cost associated with
increased gene expression, mechanistic limitations on expression from one of
the loci, and deleterious side effects associated with increased expression. The
extent to which having imprinted genes is deleterious depends, in part, on
which of these limiting factors dominates in practice. However, in each case, we
expect to find pairs or groups of genes that have opposing phenotypic effects,
and that are expressed at a level higher than what would be expected in the
absence of imprinting. These elevated, oppositional patterns of expression have
a number of potential consequences.
A. Mutational Effects

We have already noted that imprinted genes are more susceptible to loss-

of-function mutations than their unimprinted counterparts, owing to their
monoallelic expression. In addition, if the wild-type expression level is elevated
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due to intragenomic conflict, the phenotypic consequences of a loss-of-function
mutation will bemore dramatic at an imprinted locus than it would have been in
the absence of the conflict-driven escalation in gene expression.
B. Epimutations

In many cases, transcriptional inactivation of the silenced allele at an

imprinted locus is achieved through the application of DNA methylation and/
or histone modifications. At such a locus, the level of expression from the active
allele will be determined largely by cis-acting regulatory elements encoded in
the DNA itself. This arrangement produces a vulnerability to epimutations,
where the silencing epigenetic marks are lost, resulting in a dramatic increase
in the overall level of gene expression from the locus (as the normally silenced
allele will have approximately the same cis-acting regulatory motifs, which
become active in the absence of the epigenetic silencing).

The possibility of such reactivating epimutations imposes a twofold cost on
systems of imprinted genes as compared to their unimprinted counterparts.
Any locus may, in principle, be subjected to mutations that increase the gene
dosage (e.g., a mutation that increases the copy number). Imprinted genes are
susceptible to those mutation processes as well as to epimutations (which occur
at substantially higher frequencies than other classes of mutation248). Further,
due to the evolutionary escalation in expression level expected among
imprinted genes, the effect of doubling the number of active gene copies in
the cell may be more pronounced than would be the case for an unimprinted
locus.
C. Imprinting and Cancer

We have noted that imprinted genes have an increased susceptibility to

mutations and epimutations that increase or eliminate gene expression from
the locus. In addition, the resulting change in the absolute gene expression
level will tend to be greater at an imprinted locus than at an unimprinted one.
Another feature of imprinted genes is that they are typically associated either
with growth-enhancing or growth-suppressing functions in early development.

It is not surprising, then, that dysregulation of imprinted genes is found in
many cancers. A locus with a growth-enhancing effect in early development
will often maintain a mitogenic effect in adult somatic cells, and reactivation of
the silenced allele can contribute to uncontrolled cell proliferation. At the same
time, many (maternally expressed) imprinted genes have evolved a growth-
suppressing function. Many of these genes may then act as de facto tumor
suppressors in adult tissues. However, these genes will differ from many other
tumor suppressors in the fact that there is only a single active copy, which
reduces the number of somatic mutations required to eliminate the tumor-
suppressing activity of the locus.
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The contribution of epigenetic dysregulation to cancer is treated in detail
elsewhere in this volume (Chapter 14), and will not be covered further here.
D. Pleiotropic Effects

In reality, pairs of antagonistically coevolving genes will not be perfectly

aligned in terms of their phenotypic consequences. The space of possible
phenotypes occupies a large number of dimensions, and the marginal effect
of a small change in gene expression from a locus can be pictured as a vector in
this high-dimensional space. In the previous sections, we have discussed the
escalation among imprinted genes in terms of an evolutionary conflict over a
single aspect of the phenotype (e.g., fetal growth rate). In general, changes in
gene expression will affect not only the aspect of the phenotype that is the
object of the evolutionary conflict, but other aspects of the phenotype as well,
even if the maternally and paternally inherited alleles share a common pheno-
typic optimum for those other aspects. As a result of these pleiotropic effects,
the escalation that is driven by a conflict over one aspect of the phenotype can
force those other aspects of the phenotype away from their shared optima.

In a simple, linear model of the antagonistic coevolution of imprinted genes
with pleiotropic effects, it is possible to quantify themagnitude of the phenotypic
deviation at the evolutionarily stable state.249 In general, conflict will result in the
fixation of suboptimal phenotypes. Except for a vanishingly small set of special
cases, the equilibrium phenotype in the presence of imprinting will deviate from
that whichmaximizes the overall fitness of the organism (or the average fitness of
the alleles it is carrying), even for those aspects of the phenotype for which all of
the alleles in the organism share a common optimum.

With respect to the particular aspect of the phenotype that is the basis of
the conflict, we might naively expect that the evolutionarily stable phenotype
value would lie somewhere between the matrilineal and patrilineal optima.
However, in the presence of pleiotropic effects of the imprinted genes, this
expectation does not necessarily hold. In a simple model, it is predicted that
roughly half of the time the equilibrium phenotype value along the phenotypic
axis of conflict will lie outside of the range defined by the matrilineal and
patrilineal optima. Thus, the combination of intragenomic conflict and pleio-
tropic effects of imprinted genes create a situation where natural selection will
often produce a phenotype that is more extreme than what is favored by either
of the conflicting loci.
E. Decanalization

Another consequence of increasing the level of expression from a locus is

that it will tend to generate an increase in the expression variance. Under
widely differing circumstances, there seems to be a relatively simple
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relationship, where the variance in gene expression scales roughly as the square
of the mean. This relationship can be seen in yeast,250 where this variance
represents stochastic variation among genetically identical cells, as well as in
human lymphoblasts,251 where it represents stochastic variation, as well as the
consequences of interindividual genetic variation at other loci. In both cases,
the scaling relationship is robust over multiple orders of magnitude of the
absolute expression level.

Many biological processes are characterized by the phenomenon of canali-
zation, which refers to mechanisms that reduce the phenotypic variation in the
face of underlying genetic or environmental variation.252–254 The escalation
that results from intragenomic, interlocus conflict among imprinted genes can,
under some circumstances, lead to the undermining of these canalization
mechanisms (conflict-induced decanalization), resulting in an increased fre-
quency of extreme phenotypes, even if those phenotypes are associated with
disease states.255
F. The Imprinting Load

The set of phenomena described here combines to produce the ‘‘imprint-

ing load,’’ which can be thought of as the average fitness cost associated with
imprinted gene expression. More formally, we consider the average fitness
associated with a system that includes imprinted genes at its evolutionary
equilibrium. This is compared to the average fitness of the same system, but
in the absence of genomic imprinting. The imprinting load is simply the
difference between the two average fitnesses.

The imprinting load is a quantity that is difficult to calculate for real
systems. However, one can calculate the imprinting load for particular models,
and this can provide insight into which factors are most important in determin-
ing the magnitude of the fitness reduction. For example, in the simple models
of pleiotropy and decanalization described above, the imprinting load scales
roughly as the square of the magnitude of the conflict between the matrilineal
and patrilineal phenotypic optima.249,255 For example, assume imprinting load
is x in a system where the matrilineal and patrilineal optimal phenotypes differ
by a quantity a. In a system that was identical, but where the optima differed by
2a, the imprinting load would be approximately 4x.

Interestingly, in both models, the magnitude of the imprinting load is much
more sensitive to other parameters of the model. In the pleiotropy model, the
most important factor is the relationship between the pleiotropic effects of the
two loci. In the decanalization model, the most important factor is the way in
which the gene products interact to generate the phenotype.

In both cases, these other, dominant factors can be interpreted broadly as
aspects of ‘‘mechanism.’’ Thus, the simple models suggest that the addition of
genomic imprinting to a system generically results in a reduction in fitness.
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However, there does not appear to be a general answer to the question of how
large this effect is in the absence of consideration of certain details of how the
system is constructed.
V. Conclusions

Genomic imprinting affects on the order of 1% of the genome and con-
tributes to many parent-of-origin effects in heritable disease. The evolutionary
forces responsible for the origin of imprinted gene expression help to explain
many of the phenotypic consequences of imprinting-related disorders, includ-
ing the growth effects and certain consequences for feeding behaviors and
adult metabolism. In many cases, evolutionary reasoning also explains the
direction of the parent-of-origin effects. Imprinting also plays an important
role in neural development, and defects in imprinted genes are associated with
numerous cognitive and behavioral consequences, including possible associa-
tions with major psychiatric disorders including autism and schizophrenia. Our
evolutionary understanding of the cognitive and behavioral effects of imprinted
genes is much less well developed than our understanding of the effects on
growth and metabolism.

The existence of imprinted genes potentially increases the penetrance of
genetic defects, as a single mutation is sufficient to induce complete loss of
function at an imprinted locus. Similarly, the existence of the molecular
machinery responsible for imprinting creates the opportunity for epimutations
that result in dysregulation of expression, and may occur as orders of magni-
tude more frequently than mutations to the DNA sequence. Perhaps, more
important than either of these effects, however, are the consequences of
antagonistic coevolution among imprinted genes that can lead to the accumu-
lation of maladaptive phenotypes, and may contribute to elevated frequencies
of certain disease states.
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