Category Archives: genomic imprinting

On Ronin and the importance of physical colleagues

So, welcome back to my intermittent live-blog of my adventures in forming a non-profit research institute in order to function as an independent scholar. I’ve written a couple of times before: about my own goals for the enterprise, and about the things that an independent scholar will most be in need of.

One of the things, of course, that an independent scholar needs is colleagues. Depending on the nature of your research, you might be able to do the day-to-day work (math and programming, in my case) entirely on your own, but unless you are a very special sort of misanthropic genius, you need interaction with a set of colleagues. Sometimes you will want to take on collaborative projects that require the expertise of more than one person, but even more, you need knowledgeable people to bounce ideas off of, people who will ask the critical questions that make your work better, or who will drop some jewel of knowledge that lets you see the problem you’ve been working on in an entirely new way.

Now, in principle, much of this can be accomplished on the internet, but I am wondering if there are not certain types of information that more or less require face-to-face contact.

Last week, I was at a “catalysis meeting” at NESCent (the National Evolutionary Synthesis Center) on genomic imprinting. The meeting was superb. It had excellent people who work on the problem from all different perspectives: theorists and experimentalists, molecular and developmental biologists, mouse people, marsupial people, bee people. I learned a ton, and, perhaps more importantly, I learned of the existence of a bunch of things that I didn’t know. I still don’t know them, but now I know that I should know, and I know where to start looking, and whom to ask for help when I get stuck.

As an aside, I also had the chance to meet Craig McClain, Assistant Director of Science at NESCent and doyen of the group blog Deep Sea News. He was as nice as their blog is awesome.

Some people say that biologists grow to resemble the organisms that they study. You be the judge.

You might think that meetings like this are particularly efficient for transmitting information, but that you can accomplish the same thing through more aggressive and far-reaching readings of the literature. After all, the organizers of the meeting were able to find these people. In principle, I could just get all of their papers and read them carefully, referring to textbooks on biochemistry or mammalian physiology whenever there was something I didn’t understand.

But I’m not sure that would actually work.

The thing is, some of the most important pieces of information I got at the meeting were things that are not written in papers, or perhaps anywhere, nor are they likely to be. For example, there were a number of people there who have spent years working with lab mice. They have observed thousands and thousands of crosses (e.g., the outcome of a mother of one mouse strain mating with a father of a different mouse strain). This has given them a deep knowledge of what does and does not happen in these crosses, as well as a sense of how sensitive different traits are to the details of the experimental procedure.

An interesting thing was that there were certain results from the scientific literature that none of these people believe, because they are not consistent with their own observations. Now, no one has gone and written a rebuttal letter, or published a set of negative results contradicting the original papers. They have all just sort of implicitly agreed that results using a certain technique, or sometimes results coming from a certain lab, are unreliable, and they move forward with their research as if those results did not exist.

So, there is this substratum of knowledge that is widespread among experts, but which does not find its way into print. In part, this is due to the thanklessness of writing response letters and publishing negative results. In part, I think, it results from a sense of decorum / political consideration. It is common for scientists to have opinions that whole swaths of research are garbage, and it is common for them to share this knowledge in conversation, particularly over beer. However, most are too cautious to put their genuine opinions down in writing — even in e-mail.

As the good folks at Gawker say, “Today’s gossip is tomorrow’s news!”

Fundamentally, I don’t think that there is anything wrong with this arrangement, as it maintains a pretty high bar for calling someone out for doing bad science, but permits people to move forward with what they collectively perceive to be the best possible information. However, it does point to the importance of getting out there and interacting with people face to face. Otherwise, you may find yourself developing a whole research project that is predicated on some results that no one thinks are true.

I should note that this problem is not unique to the independent scholar. If you are working in a typical university department, there may not be anyone else in your department — or only a small number of people — whose research is close enough to your own that you share the same scuttlebutt. That is, no matter who you are, you need to make sure that you pursue opportunities to talk informally — and in person — with the people who care about the same things that you do.

One last observation from the NESCent meeting. This was the first scientific meeting I have attended under my official affiliation with the Ronin Institute. This meant that people would look at my name tag and ask me about it. I would tell them briefly about the idea and my plans for Ronin, and they were all very enthusiastic. The people who had come over from England, in particular, tended to comment on how very brave I was. After I got back, I came a cross this translation guide:

If you work with anyone British, you should print this out and carry it around with you. It serves as a handy guide as to whether you need to be punching them in the nose.

I’m going to assume that this is just wrong. Let’s posit that a better translation for “That is a very brave proposal” would be “Wow! You are a singular genius and an inspiration to children around the world! Also very sexy! Mee-yow!”

Genomic Imprinting at Darwin Eats Cake

So, I’ve posted the new Darwin Eats Cake, which is about genomic imprinting. I tried to do some explaining in the comic, but I suspect that there is not enough information there for the thing to make sense unless you already have at least a passing familiarity with the phenomenon.

If you’re actually interested, I’ve got a set of primers on imprinting that I’ve been working on here. You can find links to them here.

Or you can just forge ahead:

Best URL for sharing:
Permanent image URL for hotlinking or embedding:

Mitochondria and Hypertension

So, here’s a new thing.

Best URL for sharing:
URL for hotlinking or embedding:

This is based on a recent paper (citation below) where they identify a point mutation in the mitochondrial DNA that appears to result in hypertension.

So why is this interesting? Well, for me, as an evolutionary theorist who works on intragenomic conflict, it is interesting because the mitochondrial DNA is, in principle, subject to selection pressures different from the rest of the genome. For instance, mitochondrial genes present in a female would, in principle, benefit from skewing the sex ratio of the offspring of that female, since those genes can only be passed on to grandchildren through daughters. Furthermore, since mitochondria are maternally inherited, the intragenomic conflicts over inclusive fitness effects that underlie the phenomenon of genomic imprinting could potentially shape the evolution of mitochondrial genes as well.

Sadly (from the theory perspective), the scope of phenomena influenced by mitochondria is fairly limited, with a lot of the effects limited to core metabolism. That’s not to say that core metabolism is not important. Obviously, core metabolism is important to the survival of the individual. In fact the importance of these genes to survival is exactly what tends to make them evolutionarily less interesting. By and large, core metabolism is unlikely to be a significant locus of intragenomic conflict because all of the genes in an individual need that individual to be able to do things like, e.g., make ATP.

From this perspective, then, this mutation is interesting in that it represents an example of a phenotype that can be quantitatively affected by the mtDNA. This particular mutation is likely best interpreted as a mildly deleterious one that happens to exist within a particular family in China. However, it opens up the possibility of mutations with subtler phenotypic effects, which could potentially be subject to divergent selective pressures for different parts of the genome. For instance, if elevated blood pressure during pregnancy results in a greater transfer of resources from mother to offspring, we would expect autosomal and mitochondrial genes to favor different optimal blood pressures.

The other thing that is interesting is the type of mutation it is. It is actually a point mutation in the gene that produces the mitochondrial Isoleucine tRNA. This mutation messes up a site that is cleaved as a part of the normal post-transcriptional processing. The result is that the steady-state level of mitochondrial Isoleucine tRNA is reduced by 46%. This, in turn, impacts the translation of other mitochondrial gene products with protein translation reduced by an average of 32%. So, basically what it does is just muck up mitochondrial function a little bit.

Wang, S., Li, R., Fettermann, A., Li, Z., Qian, Y., Liu, Y., Wang, X., Zhou, A., Mo, J., Yang, L., Jiang, P., Taschner, A., Rossmanith, W., & Guan, M. (2011). Maternally Inherited Essential Hypertension Is Associated With the Novel 4263AG Mutation in the Mitochondrial tRNAIle Gene in a Large Han Chinese Family Circulation Research, 108 (7), 862-870 DOI: 10.1161/CIRCRESAHA.110.231811

Genomic Imprinting VI: Hemimethylation

So, last time, we discussed the fact that the expression differences associated with genomic imprinting rely on the existence of epigenetic differences, such as DNA methylation. We also mentioned that those differences are established separately in the male and female germ lines. That is, one methylation pattern is established in the female germ line during oogenesis (egg formation), while a different pattern is established in the male germ line during spermatogenesis (sperm formation).

It is straightforward to understand how such differences could be established, since oogenesis and spermatogenesis occur in physically distinct locations, where different patterns of gene expression can produce the epigenetic differences. But, after fertilization, these parent-of-origin-specific epigenetic marks are maintained across many rounds of cell division. So, a cell in, say, your liver, will exhibit different epigenetic states on maternally and paternally alleles, despite the fact that they have occupied the same cellular environment throughout development.

Alleles at an imprinted locus maintain substantial epigenetic differences, despite occupying the same environment across many cell divisions.

The allele-specific maintenance of the methylation state depends on the fact that methylation occurs at “palindromic” sequences. When we’re talking about language, a palindrome is a word or phrase that contains the same sequence of letters when read forwards or backwards, like “a man, a plan, a canal, Panama,” or “eat tea.” In genetics, a palindrome is where the nucleotide sequence on one strand of the DNA is the same as the sequence on the complementary strand (which is read in the opposite direction).

The palindrome we will be concerned with here is a really short one: CpG (where the “p” indicates the phosphate linker between the cytosine (C) and guanine (G) nucelotides).  CpG is a palindrome because C pairs with G (and G pairs with C), so that the complementary DNA strand has a CpG at the same site. Methylation occurs on the cytosines, so that if we have two alleles with different methylation states at a CpG site, they will look like this:

Here we have a schematic representation of two alleles with palindromic CpG sites that differ in their epigenetic state. In the top figure, the cytosines on both strands of the double-stranded DNA are methylated. In the bottom figure, both cytosines are unmodified.

So, how is this methylation difference maintained when the cell undergoes DNA replication and mitosis? The key lies in the fact that DNA replication is semi-conservative. That is, in order to make a copy of a double-stranded piece of DNA, what you do is pull the two strands apart and synthesize a new strand complementary to each of them.

When Watson and Crick published their paper on the structure of the DNA double helix, they noted that this structure suggested a mechanism by which the specific DNA sequence could be replicated. Crick later went on to establish a reputation for himself as a neuroscientist. Watson went on to establish a reputation for for himself as an asshole.

The newly-synthesized strands will contain normal, unmethylated cytosine, whether or not the template strand was methylated.  So, starting from unmethylated DNA, each daughter cell inherits an unmethylated copy of the allele. But, if we start from methylated DNA, each daughter cell inherits hemimethylated DNA, where one strand of the DNA double helix has a methylated cytosine, but the cytosine on the complementary strand is unmethylated.

There an enzyme, Dnmt1, that specifically targets the unmethylated cytosine at a hemimethylated CpG and methylates it. So, after the action of this enzyme, the methylated state has been restored in each of the daughter cells. The combination of the hemimethylase (or maintenance methyltransferase) activity of Dnmt1 and the semiconservative replication of DNA set up a system in which the epigenetic state of an allele can be set once, and it will be propagated across multiple cell divisions.

DNA replication of a fully methylated CpG site results in two hemimethylated copies. The hemimethylase Dnmt1 then restores these hemimethylated sites to their fully methylated form.

In the next installment, we’ll talk about another epigenetic mechanism, histone modification, and the possibility of an analogous propagation mechanism for propagating those epigenetic marks.

Yoder, J., Soman, N., Verdine, G., & Bestor, T. (1997). DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. Journal of Molecular Biology, 270 (3), 385-395 DOI: 10.1006/jmbi.1997.1125

Egypt Week – Genetic Conflict and Social Dominance

So, our next scientific Egypt Week post concerns a paper just published in last week’s issue of Nature, where the authors describe novel behavioral effects of the imprinted gene Grb10 in the mouse.

If you’re not familiar, genomic imprinting is the phenomenon where the expression pattern of a gene depends on its parental origin. So, most of your genes come in two copies, one of which came from your mom, and one of which came from your dad. For most genes, the function of the allele, or gene copy, depends just on its DNA sequence. But something like 1% of our genes are imprinted, meaning that they retain a chemical memory of which parent they came from, so that the two gene copies will function differently, even if the DNA sequences are identical.

The most widely accepted theory for the evolutionary origin of gene expression suggests that it is the result of an intragenomic conflict between maternally and paternally inherited gene copies. That is, from a gene’s-eye point of view, natural selection acts differently on maternally and paternally derived alleles.

Many imprinted genes in mammals have growth effects in early development, and these most of these effects are well described by models where selection favors more growth (and a greater demand on maternal resources) when alleles are paternally derived, and less growth (preserving more maternal resources for the mother’s other offspring) when maternally derived.

There is also evidence for large-scale imprinted gene expression in the brain, and evidence that these imprinted genes may have substantial effects on cognition and behavior. We are still at the early stages of describing these effects, and at even earlier stages of understanding the relevant evolutionary pressures.

Elsewhere on this blog, I have begun writing a series of primers on genomic imprinting, links to which can be found here, if you are interested in more background.

Today’s paper describes the effects of the two parental knockouts of the Grb10 gene. Grb10 is a particularly interesting imprinted gene, because it is maternally expressed in many peripheral tissues, but paternally expressed in the central nervous system. So, when you knock out the maternally inherited copy, you get a complete loss of function in the periphery, but don’t impact Grb10 expression in the brain. Conversely, when you knock out the paternally inherited copy, you lose gene function in the brain, but leave expression in the periphery unaffected.

The phenotype of the maternal knockout is more or less what is expected in terms of growth effects, and is consistent with previous studies of this gene. Theory predicts that if a growth-related imprinted gene is maternally expressed, it likely functions as a suppressor of growth. When the maternal copy of Grb10 was knocked out, the result was overgrowth, due to the loss of this growth-suppressing function.

The knockout of the paternally inherited results in a behavioral phenotype associated with increased social dominance, as indicated by two specific behaviors. The first dominance behavior was observed in a “tube test.” In this test, two mice who don’t know each other are forced to encounter each other in a tube. In this setting, the knockout mice are less likely to back down than the wild-type (normal) mice are.

The second observation was an increase in allogrooming and barbering. Let’s pause for a moment to talk about what that means. Allogrooming is where one individual grooms another individual (in contrast to autogrooming, where you groom yourself). Barbering is where the grooming gets out of hand, and the groomee gets big bald (and sometimes bruised and bloody) patches.

Now, intuitively, you might assume that grooming behavior is submissive, like the handmaid combing out the princess’s hair. In mice, at least, it’s not like that. If you have a pet mouse, and it is grooming you, it is actually being dominant. It’s more like when you sit your little sister down in a chair and put makeup on her – the goal is NOT to make her look good. And, if you are feeling really mean, you give her a haircut, too.

The researchers argue that the behavioral effect is specific to social dominance, as tests designed to look at anxiety, locomotion (moving), olfaction (smelling), and aggression all found no differences between these knockouts and wild-type (normal) mice.
A conflict-based interpretation of these behavioral results would suggest that, for some reason, maternally inherited genes place a greater premium on establishing social dominance than do paternally inherited genes. (In the nervous system, the gene is paternally expressed, and knocking it out increased dominance behaviors. This implies that the gene normally acts to limit dominance behaviors.)

A bemedallioned Hosni Mubarak helps to illustrate the intragenomic conflict over social dominance behaviors. Natural selection favors alleles that enhance socially dominant behaviors when they are maternally derived, but limit socially dominant behaviors when paternally derived. The study was performed in mice, and it is important to note that the patterns of imprinted gene expression can vary among species, so we can not extrapolate from these results to the influence of Grb10 on human cognition and behavior. However, mice and rats are closely related, so we are probably safe extrapolating to Mubarak.

The next question is why would alleles favor more socially dominant behaviors when maternally derived? Fundamentally, at this point we have no idea. This is where the modeling has to come in. In this type of situation it is always possible to come up with a host of possible explanations, all of which sound plausible, and all of which would predict that a paternally expressed gene would limit dominance. The key thing is to model each of those explanations formally, so that we know what key ecological and demographic factors underlie the explanation. Then, we find other species where those factors differ, and examine the imprinting status and phenotypic effect of Grb10 in those species.

For the less politically oriented, the intragenomic conflict over social dominance is like this. Nadya “Octomom” Suleman is like your maternally inherited genome, while the guy with the moustache and the milk bottle is like your paternally inherited genome. Image from the Daily Mail.

Peace be upon you.

Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J, Dalley JW, Hurst LD, Wilkinson LS, Isles AR, & Ward A (2011). Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature, 469 (7331), 534-8 PMID: 21270893 [1]


[1] Disclosure: I didn’t really intend for Egypt Week to devolve into blog-posts-about-papers-by-collaborators-of-mine week, but there you have it. I have an ongoing collaboration with Anthony Isles, and know some of the other authors.

Genomic Imprinting V: DNA methylation and gene silencing

So, we’ve already discussed the fact that genomic imprinting is mediated through epigenetic differences between the maternally and paternally inherited gene copies. That is, at an imprinted locus, the maternally inherited allele will have one pattern of epigenetic modifications, while the paternally inherited allele has a different pattern. These differences are first established in the male and female germ lines, when the alleles that will eventually become maternally and paternally derived are in physically different locations. It is not hard to imagine, then, how these differences could be established. One pattern of gene expression in spermatogenesis results in the paternal-specific epigenetic modifications. A different pattern of gene expression in oogenesis results in maternal-specific epigenetic modifications.

But what are these epigenetic modifications, and how do they change the expression pattern of the gene?

There are a number of modifications involved in imprinting, but for the moment, we’re going to focus specifically on the simplest and best-understood mechanism: DNA methylation.

The two horizontal lines in this picture represent the two copies of a gene.  The big, solid box is the part of the gene that actually codes for the protein. The open box is the promoter region, which is the part of the DNA sequence responsible for regulating expression of the gene. The lollipop things indicate DNA methylation on cytosine residues (the “C” of the A, C, G, T alphabet that makes up DNA).

In this simplest type of scenario, the DNA sequence in the promoter region binds to a variety of proteins that recruit the molecular machinery that will transcribe the gene, leading eventually to production of the corresponding protein. The addition of methyl groups to the DNA changes its binding properties, so that it no longer binds to this machinery, and that copy of the gene is not transcribed.

If you’re not a molecular biologist, you can think of it like this. The transcription machinery is a bit like a Xerox machine, and the gene is like the master copy of some document. The promoter region is like a lock that has to be unlocked before you can copy this particular document. There are a number of proteins called “transcription factors” that function like a key to this lock. These transcription factors fit nicely on the promoter region, unlocking the gene and resulting in the production of many copies of the gene product.

Adding methylation to the promoter region is a bit like squirting epoxy into the lock. The presence of the methyl groups actually changes the physical shape and chemical properties of the DNA. So, when you try to put the key in, it no longer fits right, and the gene can not be copied.

In the top part, we see the red transcription factor binding to the black promoter region, which will activate transcription from the gene. In the bottom part, methyl (CH3) groups have been chemically added to the promoter region, preventing binding, and thereby preventing transcription.

So, these relatively subtle chemical changes are able to completely alter the functional properties of the gene.

Next time, we’ll talk about how these methylation patterns are maintained through development, and how the two gene copies are able to maintain distinct epigenetic states across multiple rounds of cell division and DNA replication. Make sure to tune in, because it’s really slick!

The two references represent the first proposals that DNA methylation might be the thing that permits the stable transmission of patterns of gene expression across cell divisions.

Holliday, R., & Pugh, J. (1975). DNA modification mechanisms and gene activity during development Science, 187 (4173), 226-232 DOI: 10.1126/science.1111098

Riggs, A. (1975). X inactivation, differentiation, and DNA methylation Cytogenetic and Genome Research, 14 (1), 9-25 DOI: 10.1159/000130315

Genomic Imprinting IV: Escalation Between Loci

So, in the previous installment, we introduced the “Loudest Voice Prevails” principle, which describes the evolutionarily stable pattern of gene expression at an imprinted locus where there is an intragenomic conflict over the total level of gene expression. Basically, the allele that favors lower expression becomes transcriptionally silenced. Expression from the other allele (the “louder” voice) evolves to the level that maximizes its inclusive fitness. In this sense, the active allele at an imprinted locus “wins.”

But what is going to happen if we have a pair of imprinted genes that exert opposite effects on the phenotype? If we have a paternally expressed growth enhancer, it will evolve to bring the growth phenotype up to the paternal optimum. If we have a maternally expressed growth suppressor, it will evolve to bring the growth phenotype down to the maternal optimum. But what if we have both?

Well, intuitively, if there is conflict between maternally and paternally derived genes over the optimal growth phenotype, then the phenotype can’t simultaneously satisfy the paternal and maternal optima. One or the other (or both) of these genes will always be under selection to increase its gene expression level (or, equivalently, the activity or longevity of the gene product, etc.). Thus, these two opposing genes will become involved in a kind of arms race.

In the simplest possible model that we can write down, this arms race goes on indefinitely, with natural selection driving each of the genes towards infinite expression. Clearly, in a real biological situation, this will not be the case, and something will step in to bring this escalation to a halt. The questions then become: What stops the escalation? And, what does the system look like at its new, escalated, evolutionarily stable state?

To think about this, let’s return to our analogy from last time, where Pat and Chris are sharing an office, but disagree about what temperature the office should be kept at. Recall that genes are totally passive aggressive, so Pat and Chris don’t compromise or communicate. They just use the tools at their disposal to move the office closer to their preferred temperature. Pat wants the office at 71 degrees. Chris wants it at 70.

We saw that if Pat and Chris both have space heaters, eventually Chris’s space heater is off, while Pat’s holds the temperature at 71. On the other hand, if they both have air conditioners, Pat will turn his/her A/C off, and Chris will get to have the room at 70.

If each of them has a space heater and an air conditioner, we have an arms race on our hands. Whenever the temperature is below 71, Pat will turn up the space heater. Whenever it is above 70, Chris will turn up the air conditioner. In passive-aggressive-allele fashion, this will go back and forth until the space heater and air conditioner are both blasting away. In the absence of any constraints or side effects, it will go on until both are blasting away infinitely.

There are several ways that the escalation could stop, however, each of which has a biological analog.

     (1) Mechanical limitation. There will be some limit beyond which gene expression / activity can not increase. Once one of the genes reaches its limit, the other will win. Like if Pat’s Tufnel-brand space heater goes to eleven, Pat wins. Of course, this will depend on the mechanisms through which the two genes exert their influence. For instance, if Chris’s air conditioner is actually a combination air conditioner / food processor / exfoliator, Chris might have to turn it way way up to get the air conditioning equivalent of a little bit of space heating. Similarly, a gene product might perform multiple tasks, and this pleiotropy could limit its competitive ability in the arms race.

     (2) Production costs. One difference between the single-locus solution and the two-locus solution is the level of energy consumption. If Chris’s space heater is off, Pat’s holds the temperature at 71. If Chris’s air conditioner is maxed out at ten, Pat’s space heater (which goes to eleven, remember) holds the temperature at 71. The difference is that the second solution comes with a huge-ass electricity bill. Can this sort of cost actually halt the escalation? Maybe. This requires either that there are diminishing returns to increased escalation, or that there are accelerating costs to production (like utility rates where your thousandth kilowatt-hour costs more than your first one).

     (3) Intervention. In a real office, we might expect that the manager would come in and yell at Pat and Chris, telling them to turn down their space heater and air conditioner. Maybe the manage would mandate an office temperature of 70.5 degrees. Does this ever happen with genes? Could a consortium of unimprinted genes step in and stop the escalation? There is no evidence to my knowledge of such things happening in the context of genomic imprinting, but this type of intervention is thought to be responsible for meiotic sex-chromosome inactivation, where the autosomes all gang up and put the sex chromosomes in a headlock in order to prevent meiotic drive.

     (4) Side effects. What if turning up Pat’s space heater also makes the music louder in the office? What if Chris’s air conditioner draws so much power that it causes occasional brown-outs? This is the other way in which the escalation between imprinted genes might be self limiting. If we consider a monolithic “growth phenotype” in isolation, then each allele has a simple, monolithic optimum. But genes are seldom like that. A paternally expressed allele may benefit from increased expression due to the effect of that increased expression on growth. But what if that increased expression has other consequences, as well? Maybe those other effects are detrimental to the allele’s inclusive fitness. If those deleterious side effects outweigh the growth-related benefits, then natural selection will not drive further escalation.

In future installments, we’ll look at some specific examples of escalating genes. But first, we’ll step back and look at some of the other features and consequences of imprinted genes.

Kondoh, M., & Higashi, M. (2000). Reproductive Isolation Mechanism Resulting from Resolution of Intragenomic Conflict The American Naturalist, 156 (5), 511-518 DOI: 10.1086/303409

Wilkins, J., & Haig, D. (2001). Genomic imprinting of two antagonistic loci Proceedings of the Royal Society B: Biological Sciences, 268 (1479), 1861-1867 DOI: 10.1098/rspb.2001.1651

Genomic Imprinting III: The Loudest Voice Prevails

So, it’s been a while since the last installment of the Primers on Imprinting feature, but they should be posted with greater regularity in the upcoming weeks. This time we’re going to introduce something that we will see again in future installments: small differences in selection lead to large differences in behavior.

Last time, we introduced the most widely discussed and most successful explanation of the evolutionary origins of genomic imprinting, the “kinship” or “conflict” theory. According to this theory, imprinted gene expression is a consequence of the fact that natural selection acts differently on alleles depending on their parent of origin. There are several ways to think about the origin of this differential selection, but we talked about it in terms of the framework that I find most intuitive: inclusive fitness.

As we also noted last time, even in the cases where the asymmetry in selection on maternally and paternally derived alleles is sufficiently large to drive the evolution of imprinted gene expression, the actual magnitude of this asymmetry is actually incredibly small. Why? Well, even for a allele with large effects on the survival and reproduction of related individuals, the dominant factor in the inclusive fitness of that allele is still going to be the survival and reproduction of the individual organism carrying that allele around.

But, the standard pattern observed with imprinted genes is that the allele-specific expression is all or nothing. For example, an allele might be expressed when it is inherited from a male, but completely silent when inherited from a female. So this small difference in the optimal expression levels of the maternally and paternally derived alleles leads to – in a way – the largest possible difference in the realized expression levels of the two alleles.

I like to think of this in terms of an analogy. Imagine that Pat and Chris share an office, and that they have a slight disagreement over the temperature they want the office at. Say Pat wants the office to be at 71 degrees (Fahrenheit), while Chris wants it to be 70. Each of them has control over a small space heater, and this is the only mechanism that they have for manipulating the temperature. [1]

What’s going to happen? Let’s say the temperature is 70 degrees. Pat will turn up his/her space heater until the temperature reaches 71. In response, Chris will turn his/her space heater down until the temperature comes down to 70. They will go back and forth like this until, eventually, Chris’s space heater is completely turned off. Pat will then turn his/her space heater up to get the room to 71. Then we’re done. Chris is unhappy about the temperature of the room, but no longer has any ability to make it any cooler.

Two things about this outcome. First, a small disagreement over the ideal temperature has led to a large divergence in the strategies: Chris’s space heater is all the way off, while Pat’s is on and doing all the work. Notice that the outcome would be exactly the same, in principle, if Chris’s ideal temperature were 70.9 degrees, or even 70.999 degrees. [2]

Second, Pat wins. This is a consequence of the fact that we are talking about space heaters, and that Pat prefers the higher temperature. If, instead of space heaters, Pat and Chris each had control of an air conditioner, Chris would be the winner. At equilibrium, Pat’s air conditioner would be all the way off, and the room would be at 70 degrees.

This is also the way it works with alleles at an imprinted locus. Let’s consider the case of a gene where increased expression results in increased prenatal growth. The inclusive fitness argument says that the optimal amount of this growth factor is higher for an allele when it is paternally inherited than when it is maternally inherited. Say this patrilineal optimum is 105 units, while the maternal optimum is 95 units.

If the gene is not imprinted we might expect it to produce about 100 units, with each allele producing 50. However, once the evolutionary dynamics of imprinting take over, the pattern of expression will evolve to one where alleles are transcriptionally silent when maternally inherited, but where a paternally expressed allele is making 105 units.

For a growth-suppressing gene, where increased expression actually reduces prenatal growth, we expect the opposite pattern, where alleles are silenced when paternally inherited, but are expressed when maternally inherited. This set of predictions – that imprinted growth enhancers will be paternally expressed, and imprinted growth suppressors will be maternally expressed – matches the empirically observed pattern by and large, although there are a few counterexamples that are not fully understood at the moment.

This pattern of allele silencing has been dubbed the “loudest voice prevails” principle. The phenotype evolves to the optimum of the allele favoring higher expression. Now, you can argue that this is the sort of thing that does not really need its own name. Fair enough. It’s really just saying that the evolutionarily stable state of the system is an edge solution. But, “loudest voice prevails” is sort of catchy, and has the advantage of reminding us which allele is expressed at equilibrium.

The Haig 1996 citation is the paper that introduces the phrase. The other three citations are papers published around the same time that use different mathematical frameworks to address the evolution of gene expression at an imprinted locus. Generically speaking, the answer is the one described here, although the Spencer, Feldman, and Clark paper identifies certain regimes in parameter space where apparently different results can be obtained. In a future post, we will delve into the differences in the assumptions and conclusions of different modeling frameworks as they have been applied to imprinting.

Now, what if you consider more than one imprinted gene? What if Pat and Chris each have a space heater and an air conditioner? We’ll talk about that next time.

Haig, D. (1996). Placental hormones, genomic imprinting, and maternal-fetal communication Journal of Evolutionary Biology, 9 (3), 357-380 DOI: 10.1046/j.1420-9101.1996.9030357.x

Mochizuki A, Takeda Y, & Iwasa Y (1996). The evolution of genomic imprinting. Genetics, 144 (3), 1283-95 PMID: 8913768

Haig, D. (1997). Parental antagonism, relatedness asymmetries, and genomic imprinting Proceedings of the Royal Society B: Biological Sciences, 264 (1388), 1657-1662 DOI: 10.1098/rspb.1997.0230

Spencer HG, Feldman MW, & Clark AG (1998). Genetic conflicts, multiple paternity and the evolution of genomic imprinting. Genetics, 148 (2), 893-904 PMID: 9504935


[1] Of course, in the real-life situation, we might assume that Pat and Chris would discuss the situation and come to some sort of agreement. This is a key difference between people interacting in strategic situations and genes evolving under natural selection. Alleles at a locus are like people sharing an office, where both of them are incredibly passive aggressive. If it helps, imagine that Pat and Chris won’t talk to each other.

[2] In practice, of course, there is going to be some minimum level of disagreement required in order to trigger this passive-aggressive escalation. In this analogy, the minimum level will be set by a combination of things such as the sensitivity of Pat and Chris to small changes in temperature, the precision with which the space heaters control the temperature of the room, and the extent to which they care about each other’s comfort. Similar reasoning holds in the case of genes, and we will address this in a future installment of the series, where we ask why there are any genes that are not imprinted.

Parthenogenesis: now in snakes!

So, as if my friends on the religious right needed more reasons to be afraid of snakes, now they are threatening to undermine the nuclear family, which is clearly defined in the Bible as a mommy, a daddy, and two overachieving children. A recent paper in Biology Letters has studied two litters of offspring from a female Boa constrictor, totaling 22 baby snakes. All of the babies are female, and all of them have a rare, recessive color trait that is exhibited by the mother, but by none of the possible fathers.

What the researchers were able to demonstrate was that these baby snakes do not have a father at all. Rather, they are all parthenogenetic products of the mother. The researchers typed the offspring at eight microsatellite loci, and all the daughters were homozygous at all of the loci, matching in each case one of the two maternal alleles.

Note to self: No Boa constrictors on the island!

Several interesting things here. First, the implication is that these daughters are genome-wide homozygotes. This suggests a complete absence of lethal recessive mutations in the mother’s genome. This seems surprising, but let’s do a quick back of the envelope calculation. Let’s assume there are about 10,000 genes in the snake where a loss-of-function mutation is lethal. Say the coding region for each gene is about 1000 nucleotides long, and that, say 1/10 of those nucleotides are fixed, in the sense that a mutation obliterates the gene’s function. That would be a lethal mutational target of 100 nucleotides for each gene. Assuming a mutation rate of 10-9, mutation-selection balance at each locus would have loss-of-function mutations circulating at a frequency of about 1 in 3000. So, we would expect each maternal half-genome to contain, on average, about 3 lethal recessive mutations. Assuming that those mutations are Poisson distributed, there is about a 5% chance that it would contain no such mutations. So, not super likely, but not out of the question either. And, that probability would be higher if the mutational target is smaller, or if the Boa population has undergone significant inbreeding, which would have driven the frequency down.

Second, there’s a weirdness with the sex chromosomes. Now, in mammals, sex is determined by whether you have two X chromosomes, in which case you are a female, or an X chromosome and a Y chromosome, in which case you are a male. Everyone inherits an X chromosome from their mother, and you inherit either an X or a Y from your father. So, if you don’t have any sons, it’s not your wife’s fault. Snakes also have chromosomal sex determination, but use a ZW system. Males have two Z chromosomes, while females have a W and a Z. It turns out that every one of the parthenogenetic daughter snakes is actually WW. That’s some serious weirdness on which I have little insight. The one thing we can say is that you would never see a YY male. The Y chromosome is a shriveled little thing that does not do much other than tell you to be male, while the X does all the work. The snake W chromosome, on the other hand, is a real chromosome, that is, in fact, impossible to distinguish from the Z under the microscope.

Finally – and this is the reason I’m writing about this here – this tells us something about genomic imprinting. In mammals, there appear to be at least 50-100, possibly as many as 1000 imprinted genes, which are expressed from only one of the two copies. So, if there are 200 imprinted genes, there will be, say, 100 of them that are expressed only from the paternally inherited copy. If you produce parthenogenetic offspring, they will inherit two maternally derived alleles at each of these loci, which will be like having 100 of your genes knocked out, and is almost guaranteed to be lethal. In fact there are a number of genetic disorders in humans that result from uniparental inheritance of just a small subset of imprinted genes, and these produce fairly severe phenotypes. So, the fact that these parthenogenetic snakes appear to be perfectly viable implies that there are few – or quite possibly no – imprinted genes in this species.

Booth, W., Johnson, D., Moore, S., Schal, C., & Vargo, E. (2010). Evidence for viable, non-clonal but fatherless Boa constrictors Biology Letters DOI: 10.1098/rsbl.2010.0793

Update: Two follow-up posts here and here.

Genomic Imprinting II: Inclusive Fitness and Conflict

So, as we discussed previously, genomic imprinting is the phenomenon where the pattern of expression of an allele differs depending on whether that allele was inherited from your mother or your father. This difference in expression does not depend on differences in the DNA sequence of the two alleles. Your two alleles might have identical DNA sequences, but function completely differently.

For example, one of the two alleles might be epigenetically silenced. That is, because of reversible chemical modifications to the DNA, or to proteins that are closely associated with the DNA, that allele would be inactive. The other allele, with an identical DNA sequence, but different modifications, would be happily chugging along producing its gene product(s). Today’s question is, “That seems crazy! Why would you do something like that?”

One of interesting (and by “interesting” I mean “sad”) things about evolutionary biologists is that whenever something genuinely new and surprising is found in the world, everyone feels the need to propose an evolutionary explanation for it, whether new explanations are needed or not. So, many attempts to explain the origins of imprinting have been proposed, most of which are consistent with at least some of the data, and a few of which actually make sense. There is one explanation, however, that is far and away the most successful in explaining the distribution and nature of imprinted genes: the “Kinship” or “conflict” theory of imprinting. This theory owes its creation and early development primarily to David Haig (who laid out the theory originally in papers with Mark Westoby and Tom Moore).

The basic idea of the Kinship Theory is that natural selection favors different expression behaviors for maternally and paternally inherited alleles. That is, the optimal level of expression for an allele that is maternally inherited is different from the optimal level for a paternally inherited allele. Now, if you think about that for a minute, it probably seems strange. I mean, if I survive and reproduce, that’s equally good for any of my genes, independent of where I got them from, right? Right?

The key is recognizing that natural selection favors allele that pass on the largest number of copies to future generations. (“Isn’t that what I just said?”) AND, that it doesn’t matter whether those copies are passed on directly by my having children, or if they are passed on because because one of my relatives, who has inherited an identical copy of that allele, has children. There are different ways to represent this (which are all mathematically equivalent if you do them right), but the one that I find most intuitive is the idea of “inclusive fitness.” Basically, we can think of natural selection as maximizing the inclusive fitness of an allele, which is the fitness of every individual in the population, weighted by the probability that they carry the allele. In the simplest model, this probability is 1 for me, 1/2 for a sibling, 1/8 for a cousin, and so on.

Now, think about your relatives. With the exception of your descendants, your full siblings, and their descendants, all of your relatives are related to you either through your mother or your father. That means that, in general, this inclusive fitness calculation will be different for maternally and paternally derived alleles. Therefore, there will be a conflict, where the phenotype that would maximize the inclusive fitness of your maternally inherited allele will be different from the one that would maximize the inclusive fitness of your paternally inherited allele. If this difference is large enough, it can actually drive alleles to take on two different conditional expression strategies, and, voila, imprinting.

Granted, even in the most extreme cases, this difference is likely to be pretty subtle, which might make it seem strange that this could explain a situation where one of the two alleles is completely turned off, while the other one is cranking away. This phenomenon, where a little conflict leads to a big effect, will be the subject of the next installment.